Quantification géométrique et réduction symplectique
Séminaire Bourbaki (2000-2001)
- Volume: 43, page 249-278
- ISSN: 0303-1179
Access Full Article
topHow to cite
topVergne, Michèle. "Quantification géométrique et réduction symplectique." Séminaire Bourbaki 43 (2000-2001): 249-278. <http://eudml.org/doc/110291>.
@article{Vergne2000-2001,
author = {Vergne, Michèle},
journal = {Séminaire Bourbaki},
keywords = {quantization; symplectic reduction; Guillemin-Sternberg conjecture; Hamiltonian action; Riemann-Roch number; prequantizable symplectic manifold},
language = {fre},
pages = {249-278},
publisher = {Société Mathématique de France},
title = {Quantification géométrique et réduction symplectique},
url = {http://eudml.org/doc/110291},
volume = {43},
year = {2000-2001},
}
TY - JOUR
AU - Vergne, Michèle
TI - Quantification géométrique et réduction symplectique
JO - Séminaire Bourbaki
PY - 2000-2001
PB - Société Mathématique de France
VL - 43
SP - 249
EP - 278
LA - fre
KW - quantization; symplectic reduction; Guillemin-Sternberg conjecture; Hamiltonian action; Riemann-Roch number; prequantizable symplectic manifold
UR - http://eudml.org/doc/110291
ER -
References
top- [1] M.F. Atiyah — Elliptic operators and compact groups. Lecture Notes in Math.401, Springer, Berlin, 1974. Zbl0297.58009MR482866
- [2] M.F. Atiyah — Convexity and commuting Hamiltonians. Bull. London Math. Soc.14 (1982), 1-15. Zbl0482.58013MR642416
- [3] M.F. Atiyah & R. Bott — A Lefschetz fixed-point formula for elliptic complexes, I. Ann. of Math.86 (1967), 374-407. Zbl0161.43201MR212836
- [4] M.F. Atiyah & R. Bott — A Lefschetz fixed-point formula for elliptic complexes, II. Ann. of Math.88 (1968), 451-491. Zbl0167.21703MR232406
- [5] M.F. Atiyah & G.B. Segal — The index of elliptic operators II. Ann. of Math.87 (1968), 531-545. Zbl0164.24201MR236951
- [6] M.F. Atiyah & I.M. Singer - The index of ellipic operators. I. Ann. of Math.87 (1968), 484-530. Zbl0164.24001MR236950
- [7] N. Berline, E. Getzler & M. Vergne - Heat kernels and Dirac operators. Collection Grundlehren der Mathematischen Wissenschaften, vol. 298, Springer, Berlin, Heidelberg, New-York, 1991. Zbl0744.58001MR2273508
- [8] M. Braverman — Cohomology of the Mumford quotient. math-sg/9809146.
- [9] A. Canas Da Silva, Y. Karshon & S. Tolman — Quantization of presymplectic manifolds and circle actions. Trans. Amer. Math. Soc.352 (2000), 525-552. Zbl0977.53080MR1714519
- [10] L. Corwin & F.P. Greenleaf — A canonical approach to multiplicity formulas for induced and restricted representations of nilpotent Lie groups. Comm. Pure Appl. Math.41 (1988), 1051-1088. Zbl0667.22004MR968489
- [11] J.J. Duistermaat, V. Guillemin, E. Meinrenken & S. Wu - Symplectic reduction and Riemann-Roch for circle actions. Math. Res. Lett.2 (1995), 259- 266. Zbl0839.58026MR1338785
- [12] J.J. Duistermaat & G. Heckman — On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math.69 (1982), 259-268. Zbl0503.58015MR674406
- [13] V.L. Ginzburg, V. Guillemin & Y. Karshon - Assignments and abstract moment maps. J. Differential geom.52 (1999), 259-301. Zbl0977.53078MR1758297
- [14] V. Guillemin — Reduced phase spaces and Riemann-Roch. in Proceedings : Lie Groups and Geometry in honor of B. Kostant (Massachusets of Technology, 1994. Progress in Math.123, Birkhäuser, Boston (1995), 305-334. Zbl0869.58017MR1327539
- [15] V. Guillemin & S. Sternberg — Convexity properties of the moment mapping. Invent. Math.67 (1982), 491-513. Zbl0503.58017MR664117
- [16] V. Guillemin & S. Sternberg — Geometric Quantization and Multiplicities of group representations. Invent. Math.67 (1982), 515-538. Zbl0503.58018MR664118
- [17] L.C. Jeffrey & F.C. Kirwan — Localization for non abelian group actions. Topology34 (1995), 291-327. Zbl0833.55009MR1318878
- [18] L.C. Jeffrey & F.C. Kirwan — Localization and quantization conjecture. Topology36 (1997), 647-693. Zbl0876.55007MR1422429
- [19] T. Kawasaki — The index of elliptic operators over V-manifolds. Nagoya Math. J.84 (1981), 135-157. Zbl0437.58020MR641150
- [20] A.A. Kirillov — Éléments de la théorie des représentations. Traduit du russe. Éditions Mir. Moscou, 1974. MR393324
- [21] F.C. Kirwan — Cohomology of quotients in symplectic and algebraic geometry, Princeton Univ. Press, Princeton, 1984. Zbl0553.14020MR766741
- [22] F.C. Kirwan — Convexity properties of the moment mapping, III. Invent. Math.77 (1984), 547-552. Zbl0561.58016MR759257
- [23] Klyachko — Stable bundles, representation theory and Hermitian operators. Selecta Math.4 (1998), 419-445. Zbl0915.14010MR1654578
- [24] A. Knutson & T. Tao — The honeycomb model of GLn(C) tensor products I : proof of the saturation conjecture. J. Amer. Math. Soc.12 (1999), 1055-1090. Zbl0944.05097MR1671451
- [25] B. Kostant — Quantization and unitary representations. In Modern analysis and applications. Lecture Notes in Math.39 (1970), 87-207. Zbl0223.53028MR294568
- [26] E. Lerman — Symplectic cuts. Mathematical Research Letters, 1995, 2, 247-258. Zbl0835.53034MR1338784
- [27] J. Marsden & A. Weinstein — Reduction of symplectic manifolds with symmetry. Reports in Math. Phys.5 (1974), 121-130. Zbl0327.58005MR402819
- [28] E. Meinrenken — On Riemann-Roch formulas for multiplicities. J. Amer. Math. Soc.9 (1996), 373-389. Zbl0851.53020MR1325798
- [29] E. Meinrenken — Symplectic surgery and the Spinc-Dirac operator, Advances in Math.134 (1998), 240-277. Zbl0929.53045MR1617809
- [30] E. Meinrenken & R. Sjamaar - Singular reduction and quantization. Topology, 38 (1999), 699-762. Zbl0928.37013MR1679797
- [31] D. Mumford — Proof of the convexity theorem. Appendix to : Stratification of the null cone via the moment map, by L. Ness. Amer. J. Math.106 (1984), 1280-1329. Zbl0604.14006MR765581
- [32] D. Mumford, J. Fogarty & F. Kirwan — Geometric invariant theory. 3d edition. Springer, Berlin, 1993. Zbl0797.14004MR1304906
- [33] P.-E. Paradan — Localization of the Riemann-Roch character. Journal of Functional Analysis187 (2001), 442-509. Zbl1001.53062MR1875155
- [34] P.-E. Paradan — Spinc quantization and the K-multiplicities of the discrete series. math.DG/0103222, à paraître.
- [35] R. Sjamaar — Holomorphic slices, symplectic reduction and multiplicities of group representations. Annals of Mathematics141 (1995), 87-129. Zbl0827.32030MR1314032
- [36] R. Sjamaar — Symplectic reduction and Riemann-Roch formulas for multiplicities. American Mathematical society Bulletin33 (1996), 327-338. Zbl0857.58021MR1364017
- [37] R. Sjamaar & E. Lerman — Stratified symplectic spaces and reduction. Annals of Mathematics134 (1991), 375-422. Zbl0759.58019MR1127479
- [38] C. Teleman — The quantization conjecture revisited. Ann. of Math.152 (2000), 1-43. Zbl0980.53102MR1792291
- [39] Y. Tian & W. Zhang — An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg. Invent. Math.132 (1998), 229-259. Zbl0944.53047MR1621428
- [40] Y. Tian & W. Zhang — Quantization formula for singular reduction. Prépublication dg-ga/9706010.
- [41] Y. Tian & W. Zhang — Symplectic reduction and a weighted multiplicity formula for twisted SpinC-Dirac operators. Asian Journal of Math.2 (1998), 591- 608. Zbl0952.53041MR1724626
- [42] Y. Tian & W. Zhang — Holomorphic Morse inequalities in symplectic reduction. Math. Res. Lett5 (1998), 345-352. Zbl0909.53020MR1637832
- [43] Y. Tian & W. Zhang — Quantization formula for symplectic manifolds with boundary. Geom. Funct. Anal9 (1999), 596-640. Zbl0970.53046MR1708436
- [44] M. Vergne - Equivariant index formulas for orbifolds. Duke Math. J.82 (1996), 637-652. Zbl0874.57029MR1387687
- [45] M. Vergne - Multiplicities formulas for geometric quantization. Parts I and I, Duke Math. J.82 (1996), 143-179, 181-194. Zbl0855.58033MR1387225
- [46] E. Witten — Two dimensional gauge theories revisited. J. Geom. Phys.9 (1992), 303-368. Zbl0768.53042MR1185834
- [47] C. Woodward — The classification of transversal multiplicity-free group actions. Annals of Global Analysis and Geometry14 (1996), 3-42. Zbl0877.58022MR1375064
- [48] S. Wu — A note on higher cohomology groups of Kähler quotients. Annals of Global Analysis and Geometry18 (2000), 569-576. Zbl1028.53083MR1800593
- [49] W. Zhang — Holomorphic quantization formula in singular reduction. Commun. Contemp. Math.1 (1999), 281-293. Zbl0970.53044MR1707886
- [50] W. Zhang — Symplectic reduction and Family quantization. International Mathematics Research Notices19 (1999), 1043-1056. Zbl0939.53044MR1725482
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.