Quantification géométrique et réduction symplectique

Michèle Vergne

Séminaire Bourbaki (2000-2001)

  • Volume: 43, page 249-278
  • ISSN: 0303-1179

How to cite

top

Vergne, Michèle. "Quantification géométrique et réduction symplectique." Séminaire Bourbaki 43 (2000-2001): 249-278. <http://eudml.org/doc/110291>.

@article{Vergne2000-2001,
author = {Vergne, Michèle},
journal = {Séminaire Bourbaki},
keywords = {quantization; symplectic reduction; Guillemin-Sternberg conjecture; Hamiltonian action; Riemann-Roch number; prequantizable symplectic manifold},
language = {fre},
pages = {249-278},
publisher = {Société Mathématique de France},
title = {Quantification géométrique et réduction symplectique},
url = {http://eudml.org/doc/110291},
volume = {43},
year = {2000-2001},
}

TY - JOUR
AU - Vergne, Michèle
TI - Quantification géométrique et réduction symplectique
JO - Séminaire Bourbaki
PY - 2000-2001
PB - Société Mathématique de France
VL - 43
SP - 249
EP - 278
LA - fre
KW - quantization; symplectic reduction; Guillemin-Sternberg conjecture; Hamiltonian action; Riemann-Roch number; prequantizable symplectic manifold
UR - http://eudml.org/doc/110291
ER -

References

top
  1. [1] M.F. Atiyah — Elliptic operators and compact groups. Lecture Notes in Math.401, Springer, Berlin, 1974. Zbl0297.58009MR482866
  2. [2] M.F. Atiyah — Convexity and commuting Hamiltonians. Bull. London Math. Soc.14 (1982), 1-15. Zbl0482.58013MR642416
  3. [3] M.F. Atiyah & R. Bott — A Lefschetz fixed-point formula for elliptic complexes, I. Ann. of Math.86 (1967), 374-407. Zbl0161.43201MR212836
  4. [4] M.F. Atiyah & R. Bott — A Lefschetz fixed-point formula for elliptic complexes, II. Ann. of Math.88 (1968), 451-491. Zbl0167.21703MR232406
  5. [5] M.F. Atiyah & G.B. Segal — The index of elliptic operators II. Ann. of Math.87 (1968), 531-545. Zbl0164.24201MR236951
  6. [6] M.F. Atiyah & I.M. Singer - The index of ellipic operators. I. Ann. of Math.87 (1968), 484-530. Zbl0164.24001MR236950
  7. [7] N. Berline, E. Getzler & M. Vergne - Heat kernels and Dirac operators. Collection Grundlehren der Mathematischen Wissenschaften, vol. 298, Springer, Berlin, Heidelberg, New-York, 1991. Zbl0744.58001MR2273508
  8. [8] M. Braverman — Cohomology of the Mumford quotient. math-sg/9809146. 
  9. [9] A. Canas Da Silva, Y. Karshon & S. Tolman — Quantization of presymplectic manifolds and circle actions. Trans. Amer. Math. Soc.352 (2000), 525-552. Zbl0977.53080MR1714519
  10. [10] L. Corwin & F.P. Greenleaf — A canonical approach to multiplicity formulas for induced and restricted representations of nilpotent Lie groups. Comm. Pure Appl. Math.41 (1988), 1051-1088. Zbl0667.22004MR968489
  11. [11] J.J. Duistermaat, V. Guillemin, E. Meinrenken & S. Wu - Symplectic reduction and Riemann-Roch for circle actions. Math. Res. Lett.2 (1995), 259- 266. Zbl0839.58026MR1338785
  12. [12] J.J. Duistermaat & G. Heckman — On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math.69 (1982), 259-268. Zbl0503.58015MR674406
  13. [13] V.L. Ginzburg, V. Guillemin & Y. Karshon - Assignments and abstract moment maps. J. Differential geom.52 (1999), 259-301. Zbl0977.53078MR1758297
  14. [14] V. Guillemin — Reduced phase spaces and Riemann-Roch. in Proceedings : Lie Groups and Geometry in honor of B. Kostant (Massachusets of Technology, 1994. Progress in Math.123, Birkhäuser, Boston (1995), 305-334. Zbl0869.58017MR1327539
  15. [15] V. Guillemin & S. Sternberg — Convexity properties of the moment mapping. Invent. Math.67 (1982), 491-513. Zbl0503.58017MR664117
  16. [16] V. Guillemin & S. Sternberg — Geometric Quantization and Multiplicities of group representations. Invent. Math.67 (1982), 515-538. Zbl0503.58018MR664118
  17. [17] L.C. Jeffrey & F.C. Kirwan — Localization for non abelian group actions. Topology34 (1995), 291-327. Zbl0833.55009MR1318878
  18. [18] L.C. Jeffrey & F.C. Kirwan — Localization and quantization conjecture. Topology36 (1997), 647-693. Zbl0876.55007MR1422429
  19. [19] T. Kawasaki — The index of elliptic operators over V-manifolds. Nagoya Math. J.84 (1981), 135-157. Zbl0437.58020MR641150
  20. [20] A.A. Kirillov — Éléments de la théorie des représentations. Traduit du russe. Éditions Mir. Moscou, 1974. MR393324
  21. [21] F.C. Kirwan — Cohomology of quotients in symplectic and algebraic geometry, Princeton Univ. Press, Princeton, 1984. Zbl0553.14020MR766741
  22. [22] F.C. Kirwan — Convexity properties of the moment mapping, III. Invent. Math.77 (1984), 547-552. Zbl0561.58016MR759257
  23. [23] Klyachko — Stable bundles, representation theory and Hermitian operators. Selecta Math.4 (1998), 419-445. Zbl0915.14010MR1654578
  24. [24] A. Knutson & T. Tao — The honeycomb model of GLn(C) tensor products I : proof of the saturation conjecture. J. Amer. Math. Soc.12 (1999), 1055-1090. Zbl0944.05097MR1671451
  25. [25] B. Kostant — Quantization and unitary representations. In Modern analysis and applications. Lecture Notes in Math.39 (1970), 87-207. Zbl0223.53028MR294568
  26. [26] E. Lerman — Symplectic cuts. Mathematical Research Letters, 1995, 2, 247-258. Zbl0835.53034MR1338784
  27. [27] J. Marsden & A. Weinstein — Reduction of symplectic manifolds with symmetry. Reports in Math. Phys.5 (1974), 121-130. Zbl0327.58005MR402819
  28. [28] E. Meinrenken — On Riemann-Roch formulas for multiplicities. J. Amer. Math. Soc.9 (1996), 373-389. Zbl0851.53020MR1325798
  29. [29] E. Meinrenken — Symplectic surgery and the Spinc-Dirac operator, Advances in Math.134 (1998), 240-277. Zbl0929.53045MR1617809
  30. [30] E. Meinrenken & R. Sjamaar - Singular reduction and quantization. Topology, 38 (1999), 699-762. Zbl0928.37013MR1679797
  31. [31] D. Mumford — Proof of the convexity theorem. Appendix to : Stratification of the null cone via the moment map, by L. Ness. Amer. J. Math.106 (1984), 1280-1329. Zbl0604.14006MR765581
  32. [32] D. Mumford, J. Fogarty & F. Kirwan — Geometric invariant theory. 3d edition. Springer, Berlin, 1993. Zbl0797.14004MR1304906
  33. [33] P.-E. Paradan — Localization of the Riemann-Roch character. Journal of Functional Analysis187 (2001), 442-509. Zbl1001.53062MR1875155
  34. [34] P.-E. Paradan — Spinc quantization and the K-multiplicities of the discrete series. math.DG/0103222, à paraître. 
  35. [35] R. Sjamaar — Holomorphic slices, symplectic reduction and multiplicities of group representations. Annals of Mathematics141 (1995), 87-129. Zbl0827.32030MR1314032
  36. [36] R. Sjamaar — Symplectic reduction and Riemann-Roch formulas for multiplicities. American Mathematical society Bulletin33 (1996), 327-338. Zbl0857.58021MR1364017
  37. [37] R. Sjamaar & E. Lerman — Stratified symplectic spaces and reduction. Annals of Mathematics134 (1991), 375-422. Zbl0759.58019MR1127479
  38. [38] C. Teleman — The quantization conjecture revisited. Ann. of Math.152 (2000), 1-43. Zbl0980.53102MR1792291
  39. [39] Y. Tian & W. Zhang — An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg. Invent. Math.132 (1998), 229-259. Zbl0944.53047MR1621428
  40. [40] Y. Tian & W. Zhang — Quantization formula for singular reduction. Prépublication dg-ga/9706010. 
  41. [41] Y. Tian & W. Zhang — Symplectic reduction and a weighted multiplicity formula for twisted SpinC-Dirac operators. Asian Journal of Math.2 (1998), 591- 608. Zbl0952.53041MR1724626
  42. [42] Y. Tian & W. Zhang — Holomorphic Morse inequalities in symplectic reduction. Math. Res. Lett5 (1998), 345-352. Zbl0909.53020MR1637832
  43. [43] Y. Tian & W. Zhang — Quantization formula for symplectic manifolds with boundary. Geom. Funct. Anal9 (1999), 596-640. Zbl0970.53046MR1708436
  44. [44] M. Vergne - Equivariant index formulas for orbifolds. Duke Math. J.82 (1996), 637-652. Zbl0874.57029MR1387687
  45. [45] M. Vergne - Multiplicities formulas for geometric quantization. Parts I and I, Duke Math. J.82 (1996), 143-179, 181-194. Zbl0855.58033MR1387225
  46. [46] E. Witten — Two dimensional gauge theories revisited. J. Geom. Phys.9 (1992), 303-368. Zbl0768.53042MR1185834
  47. [47] C. Woodward — The classification of transversal multiplicity-free group actions. Annals of Global Analysis and Geometry14 (1996), 3-42. Zbl0877.58022MR1375064
  48. [48] S. Wu — A note on higher cohomology groups of Kähler quotients. Annals of Global Analysis and Geometry18 (2000), 569-576. Zbl1028.53083MR1800593
  49. [49] W. Zhang — Holomorphic quantization formula in singular reduction. Commun. Contemp. Math.1 (1999), 281-293. Zbl0970.53044MR1707886
  50. [50] W. Zhang — Symplectic reduction and Family quantization. International Mathematics Research Notices19 (1999), 1043-1056. Zbl0939.53044MR1725482

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.