Spinc-quantization and the K-multiplicities of the discrete series
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 5, page 805-845
- ISSN: 0012-9593
Access Full Article
topHow to cite
topParadan, Paul-Émile. "Spinc-quantization and the K-multiplicities of the discrete series." Annales scientifiques de l'École Normale Supérieure 36.5 (2003): 805-845. <http://eudml.org/doc/82619>.
@article{Paradan2003,
author = {Paradan, Paul-Émile},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {805-845},
publisher = {Elsevier},
title = {Spinc-quantization and the K-multiplicities of the discrete series},
url = {http://eudml.org/doc/82619},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Paradan, Paul-Émile
TI - Spinc-quantization and the K-multiplicities of the discrete series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 5
SP - 805
EP - 845
LA - eng
UR - http://eudml.org/doc/82619
ER -
References
top- [1] Atiyah M.F., Elliptic Operators and Compact Groups, Lecture Notes in Math., vol. 401, Springer-Verlag, Berlin/New York, 1974. Zbl0297.58009MR482866
- [2] Atiyah M.F., Convexity and commuting Hamiltonians, Bull. London Math. Soc.14 (1982) 1-15. Zbl0482.58013MR642416
- [3] Atiyah M.F., Bott R., Shapiro A., Clifford modules, Topology3 (Suppl. 1) (1964) 3-38. Zbl0146.19001MR167985
- [4] Atiyah M.F., Segal G.B., The index of elliptic operators II, Ann. of Math.87 (1968) 531-545. Zbl0164.24201MR236951
- [5] Atiyah M.F., Singer I.M., The index of elliptic operators I, Ann. of Math.87 (1968) 484-530. Zbl0164.24001MR236950
- [6] Atiyah M.F., Singer I.M., The index of elliptic operators III, Ann. of Math.87 (1968) 546-604. Zbl0164.24301MR236952
- [7] Atiyah M.F., Singer I.M., The index of elliptic operators IV, Ann. of Math.93 (1971) 139-141. Zbl0212.28603MR279833
- [8] Berline N., Getzler E., Vergne M., Heat Kernels and Dirac Operators, Grundlehren Math. Wiss., vol. 298, Springer-Verlag, Berlin, 1991. Zbl0744.58001MR2273508
- [9] Berline N., Vergne M., The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math.124 (1996) 11-49. Zbl0847.46037MR1369410
- [10] Berline N., Vergne M., L'indice équivariant des opérateurs transversalement elliptiques, Invent. Math.124 (1996) 51-101. Zbl0883.58037MR1369411
- [11] Cannas da Silva A., Karshon Y., Tolman S., Quantization of presymplectic manifolds and circle actions, Trans. Amer. Math. Soc.352 (2000) 525-552. Zbl0977.53080MR1714519
- [12] Duflo M., Représentations de carré intégrable des groupes semi-simples réels, in: Sém. Bourbaki (1977/78), Exp. no 508, Lecture Notes in Math.710 (1979) 22-40. Zbl0411.22011MR554213
- [13] Duflo M., Heckman G., Vergne M., Projection d'orbites, formule de Kirillov et formule de Blattner, Mém. Soc. Math. Fr.15 (1984) 65-128. Zbl0575.22014MR789081
- [14] Duistermaat J.J., The Heat Lefschetz Fixed Point Formula for the Spinc-Dirac Operator, Progr. Nonlinear Differential Equation Appl., vol. 18, Birkhäuser, Boston, 1996. Zbl0858.58045MR1365745
- [15] Guillemin V., Sternberg S., Convexity properties of the moment mapping, Invent. Math.67 (1982) 491-513. Zbl0503.58017MR664117
- [16] Guillemin V., Sternberg S., Geometric quantization and multiplicities of group representations, Invent. Math.67 (1982) 515-538. Zbl0503.58018MR664118
- [17] Guillemin V., Sternberg S., A normal form for the moment map, in: Sternberg S. (Ed.), Differential Geometric Methods in Mathematical Physics, Reidel Publishing Company, Dordrecht, 1984. Zbl0548.58011MR767835
- [18] Jeffrey L., Kirwan F., Localization and quantization conjecture, Topology36 (1997) 647-693. Zbl0876.55007MR1422429
- [19] Harish-Chandra H., Discrete series for semi-simple Lie group, I and II, Acta Math.113 (1965) 242-318, Acta Math.116 (1966) 1-111. Zbl0199.20102MR219666
- [20] Hecht H., Schmid W., A proof of Blattner's conjecture, Invent. Math.31 (1975) 129-154. Zbl0319.22012MR396855
- [21] Kawasaki T., The index of elliptic operators over V-manifolds, Nagoya Math. J.84 (1981) 135-157. Zbl0437.58020MR641150
- [22] Kirwan F., Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton Univ. Press, Princeton, 1984. Zbl0553.14020MR766741
- [23] Kirwan F., Convexity properties of the moment mapping III, Invent. Math.77 (1984) 547-552. Zbl0561.58016MR759257
- [24] Kostant B., Quantization and unitary representations, in: Modern Analysis and Applications, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin/New York, 1970, pp. 87-207. Zbl0223.53028MR294568
- [25] Lawson H., Michelsohn M.-L., Spin Geometry, Princeton Math. Ser., vol. 38, Princeton Univ. Press, Princeton, 1989. Zbl0688.57001MR1031992
- [26] Lerman E., Meinrenken E., Tolman S., Woodward C., Non-Abelian convexity by symplectic cuts, Topology37 (1998) 245-259. Zbl0913.58023MR1489203
- [27] Meinrenken E., On Riemann–Roch formulas for multiplicities, J. Amer. Math. Soc.9 (1996) 373-389. Zbl0851.53020MR1325798
- [28] Meinrenken E., Symplectic surgery and the Spinc-Dirac operator, Adv. Math.134 (1998) 240-277. Zbl0929.53045MR1617809
- [29] Meinrenken E., Sjamaar S., Singular reduction and quantization, Topology38 (1999) 699-762. Zbl0928.37013MR1679797
- [30] Paradan P.-É., Formules de localisation en cohomologie équivariante, Compositio Math.117 (1999) 243-293. Zbl0934.55006MR1702424
- [31] Paradan P.-É., The moment map and equivariant cohomology with generalized coefficient, Topology39 (2000) 401-444. Zbl0941.37050MR1722000
- [32] Paradan P.-É., The Fourier transform of semi-simple coadjoint orbits, J. Funct. Anal.163 (1999) 152-179. Zbl0915.22008MR1682831
- [33] Paradan P.-É., Localization of the Riemann–Roch character, J. Funct. Anal.187 (2001) 442-509. Zbl1001.53062MR1875155
- [34] Schmid W., On a conjecture of Langlands, Ann. of Math.93 (1971) 1-42. Zbl0291.43013MR286942
- [35] Schmid W., L2-cohomology and the discrete series, Ann. of Math.103 (1976) 375-394. Zbl0333.22009MR396856
- [36] Schmid W., Discrete series, in: Proc. Symp. Pure Math., vol. 61, 1997, pp. 83-113. Zbl0936.22009MR1476494
- [37] Sjamaar R., Symplectic reduction and Riemann–Roch formulas for multiplicities, Bull. Amer. Math. Soc.33 (1996) 327-338. Zbl0857.58021MR1364017
- [38] Sjamaar R., Convexity properties of the moment mapping re-examined, Adv. Math.138 (1998) 46-91. Zbl0915.58036MR1645052
- [39] Segal G., Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math.34 (1968) 129-151. Zbl0199.26202MR234452
- [40] Tian Y., Zhang W., An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg, Invent. Math.132 (1998) 229-259. Zbl0944.53047MR1621428
- [41] Vergne M., Geometric quantization and equivariant cohomology, in: First European Congress in Mathematics, vol. 1, Progr. Math., vol. 119, Birkhäuser, Boston, 1994, pp. 249-295. Zbl0827.58020MR1341826
- [42] Vergne M., Multiplicity formula for geometric quantization, Part I, Part II, and Part III, Duke Math. J.82 (1996) 143-179, 181–194, 637–652. Zbl0855.58033MR1387225
- [43] Vergne M., Quantification géométrique et réduction symplectique, Astérisque282 (2002) 249-278. Zbl1037.53062MR1975181
- [44] Witten E., Two dimensional gauge theories revisited, J. Geom. Phys.9 (1992) 303-368. Zbl0768.53042MR1185834
- [45] Woodhouse N.M.J., Geometric Quantization, Oxford Math. Monogr., Clarendon, Oxford, 1997. Zbl0747.58004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.