Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf

Georges Skandalis

Séminaire Bourbaki (2000-2001)

  • Volume: 43, page 345-364
  • ISSN: 0303-1179

How to cite

top

Skandalis, Georges. "Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf." Séminaire Bourbaki 43 (2000-2001): 345-364. <http://eudml.org/doc/110295>.

@article{Skandalis2000-2001,
author = {Skandalis, Georges},
journal = {Séminaire Bourbaki},
keywords = {noncommutative geometry; transverse signature operator; Hopf algebras; cyclic cohomology; -homology; local index formula},
language = {fre},
pages = {345-364},
publisher = {Société Mathématique de France},
title = {Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf},
url = {http://eudml.org/doc/110295},
volume = {43},
year = {2000-2001},
}

TY - JOUR
AU - Skandalis, Georges
TI - Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf
JO - Séminaire Bourbaki
PY - 2000-2001
PB - Société Mathématique de France
VL - 43
SP - 345
EP - 364
LA - fre
KW - noncommutative geometry; transverse signature operator; Hopf algebras; cyclic cohomology; -homology; local index formula
UR - http://eudml.org/doc/110295
ER -

References

top
  1. [1] M.F. Atiyah — Global theory of elliptic operators, Proc. Int. Conf. Functional Analysis and related topics. Univ. Tokyo Press (1970), 21-30. Zbl0193.43601MR266247
  2. [2] S. Baaj & G. Skandalis — Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. Éc. Norm. Sup.4e série 26 (1993), 425-488. Zbl0804.46078MR1235438
  3. [3] S. Baaj & G. Skandalis — Transformations pentagonales, C. R. Acad. Sci. Paris Sér. I Math.327, no. 7 (1998), 623-628. Zbl1040.37500MR1652717
  4. [4] S. Baaj & G. Skandalis — En préparation. 
  5. [5] R. Beals & P. Greiner — Calculus on Heisenberg manifolds, Annals of Mathematics Studies119, Princeton University Press, Princeton, NJ (1988). Zbl0654.58033MR953082
  6. [6] L.G. Brown, R.G. Douglas & P.A. Fillmore — Extensions of C*-algebras and K-homology, Ann. of Math.105 (1977), 265-324. Zbl0376.46036MR458196
  7. [7] P. Cartier - Homologie cyclique : rapport sur des travaux récents de Connes, Karoubi, Loday, Quillen..., Sém. Bourbaki, 1983/84, Astérisque121-122, Soc. Math. France (1985), 123-146. Zbl0556.18006MR768957
  8. [8] J. Cheeger — Spectral geometry of singular Riemannian spaces, J. Differential Geom.18, no. 4 (1983), 575-657. Zbl0529.58034MR730920
  9. [9] A. Connes - Sur la théorie non commutative de l'intégration, Lect. Notes in Math.725 (1979), 19-143. Zbl0412.46053MR548112
  10. [10] A. Connes - Noncommutative differential geometry. Chapter I : The Chern character in K-homology. Chapter II : De Rham homology and non commutative algebra, Publ. Math. Inst. Hautes Études Sci.62 (1985), 257-360. Zbl0592.46056MR823176
  11. [11] A. Connes - Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras (Kyoto, 1983), Longman Sci. Tech., Harlow, Pitman Res. Notes Math. Ser. 123 (1986), 52-144. Zbl0647.46054MR866491
  12. [12] A. Connes - Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules, K-Theory1, no. 6 (1988), 519-548. Zbl0657.46049
  13. [13] A. Connes - Non commutative geometry, Academic Press, Inc., San Diego, CA (1994). 
  14. [14] A. Connes - Geometry from the spectral point of view, Letters in Mathematical Physics34 (1995), 203-238. Zbl1042.46515MR1345552
  15. [15] A. Connes - Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.)5, no. 1 (1999), 29-106. Zbl0945.11015MR1694895
  16. [16] A. Connes & D. Kreimer — Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys.199, no. 1 (1998), 203-242. Zbl0932.16038MR1660199
  17. [17] A. Connes & D. Kreimer — Renormalization in quantum field theory and the Riemann-Hilbert problem I : The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys.210, no. 1 (2000), 249-273. Zbl1032.81026MR1748177
  18. [18] A. Connes & D. Kreimer — Renormalization in quantum field theory and the Riemann-Hilbert problem. II : The β-function, diffeomorphisms and the renormalization group, Comm. Math. Phys.216, no. 1 (2001), 215-241. Zbl1042.81059
  19. [19] A. Connes & H. Moscovici — The local index formula in noncommutative geometry, Geom. Funct. Anal5, no. 2 (1995), 174-243. Zbl0960.46048MR1334867
  20. [20] A. Connes & H. Moscovici — Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys.198, no. 1 (1998), 199-246. Zbl0940.58005MR1657389
  21. [21] A. Connes & H. Moscovici — Cyclic cohomology and Hopf algebras, Letters in Mathematical Physics48 (1999), 97-108. Zbl0941.16024MR1718047
  22. [22] A. Connes & H. Moscovici — Cyclic Cohomology and Hopf Algebra Symmetry, Letters in Mathematical Physics52 (2000), 1-28. Zbl0974.58006MR1800488
  23. [23] A. Connes & H. Moscovici — Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry (preprint 2001). Zbl1018.57013MR1929328
  24. [24] M. Crainic — Cyclic Cohomology of Hopf algebras and a Noncommutative Chern-Weil Theory (preprint 1998). MR1868538
  25. [25] I.M. Gel'fand & D.B. Fuks — Cohomologies of the Lie algebra of formal vector fields (Russian), Izv. Akad. Nauk SSSR Ser. Mat.34 (1970), 322-337. Zbl0216.20302MR266195
  26. [26] G. Godbillon — Cohomologies d'algèbres de Lie de champs de vecteurs formels, Sém. Bourbaki, 1971/72, exp. no. 421, Lect. Notes in Math.383 (1974), 69-87. Zbl0296.17010MR418112
  27. [27] J. Gracia-Bondía, J. Várilly & H. Figueroa - Elements of noncommutative geometry, Birkhäuser Advanced Texts : Basler Lehrbücher, Boston, MA (2001). Zbl0958.46039MR1789831
  28. [28] M. Hilsum & G. Skandalis — Morphismes K-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov, Ann. Sci. Éc. Norm. Sup.4e série 20 (1987), 325-390. Zbl0656.57015MR925720
  29. [29] A. Jaffe, A. Lesniewski & K. Osterwalder - Quantum K-theory. I. The Chern character, Comm. Math. Phys.118, no. 1 (1988), 1-14. Zbl0656.58048MR954672
  30. [30] G.I. Kac — Extensions of groups to ring groups, Math U.S.S.R. Sbornik5 (1968), 451-474. Zbl0205.03301
  31. [31] G.G. Kasparov — The operator K-functor and extensions of C*-algebras, Math. USSR Izv. 16 (1981), no. 3, 513-572. Translated from : Izv. Akad. Nauk. S.S.S.R. Ser. Mat.44 (1980), 571-636. Zbl0464.46054MR582160
  32. [32] C. Kassel — Le résidu non commutatif (d'après M. Wodzicki), Sém. Bourbaki, vol. 1988/89, exp. no. 708, Astérisque177-178 (1989), 199-229. Zbl0701.58054MR1040574
  33. [33] D. Kreimer — On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys.2, no. 2 (1998), 303-334. Zbl1041.81087MR1633004
  34. [34] J. Kustermans & S. Vaes — Locally compact quantum groups, Ann. Sci. Éc. Norm. Sup.4e série 33 (6) (2000), 837-934. Zbl1034.46508MR1832993
  35. [35] J.-M. Lescure - Triplets spectraux pour les pseudovariétés à singularité conique isolée, C. R. Acad. Sci. Paris Sér. I Math. 327, no. 10 (1998), 871-874. Zbl0936.46053MR1663493
  36. [36] J.-M. Lescure — Triplets spectraux pour les pseudo-variétés avec singularité conique isolée. Thèse (preprint 1997). 
  37. [37] S. Majid — Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations, J.F.A.95, no. 2 (1991), 291-319. Zbl0741.46033MR1092128
  38. [38] R. Ponge - Calcul hypoelliptique sur les variétés de Heisenberg, résidu non commutatif et géométrie pseudo-hermitienne. Thèse (preprint 2000). 
  39. [39] R.T. Seeley — Complex powers of an elliptic operator. Singular Integrals, Proc. Sympos. Pure Math., Chicago, Ill. (1966), Amer. Math. Soc., Providence, R.I. (1967), 288-307. Zbl0159.15504MR237943
  40. [40] M.E. Sweedler — Hopf algebras, Mathematics Lecture Note Series - W. A. Benjamin, Inc., New York (1969). Zbl0194.32901MR252485
  41. [41] M. Takeuchi — Matched pairs of groups and bismashed product of Hopf algebras, Comm. Alg.9 (1981), 841-882. Zbl0456.16011MR611561
  42. [42] B.L. Tsygan — Homology of matrix Lie algebras over rings and the Hochschild homology (en russe), Uspekhi Mat. Nauk38, no. 2 (230) (1983), 217-218. Zbl0518.17002MR695483
  43. [43] S. Vaes & L. Vainerman — Extensions of locally compact quantum groups and the bicrossed product construction (preprint 2001). MR1970242
  44. [44] M. Wodzicki — Noncomrrzutative residue. I. Fundamentals, K-theory, arithmetic and geometry (Moscow, 19841986-), Lecture Notes in Math.1289 (Springer, Berlin) (1987), 320-399. Zbl0649.58033MR923140

NotesEmbed ?

top

You must be logged in to post comments.