Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf

Georges Skandalis

Séminaire Bourbaki (2000-2001)

  • Volume: 43, page 345-364
  • ISSN: 0303-1179

How to cite

top

Skandalis, Georges. "Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf." Séminaire Bourbaki 43 (2000-2001): 345-364. <http://eudml.org/doc/110295>.

@article{Skandalis2000-2001,
author = {Skandalis, Georges},
journal = {Séminaire Bourbaki},
keywords = {noncommutative geometry; transverse signature operator; Hopf algebras; cyclic cohomology; -homology; local index formula},
language = {fre},
pages = {345-364},
publisher = {Société Mathématique de France},
title = {Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf},
url = {http://eudml.org/doc/110295},
volume = {43},
year = {2000-2001},
}

TY - JOUR
AU - Skandalis, Georges
TI - Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf
JO - Séminaire Bourbaki
PY - 2000-2001
PB - Société Mathématique de France
VL - 43
SP - 345
EP - 364
LA - fre
KW - noncommutative geometry; transverse signature operator; Hopf algebras; cyclic cohomology; -homology; local index formula
UR - http://eudml.org/doc/110295
ER -

References

top
  1. [1] M.F. Atiyah — Global theory of elliptic operators, Proc. Int. Conf. Functional Analysis and related topics. Univ. Tokyo Press (1970), 21-30. Zbl0193.43601MR266247
  2. [2] S. Baaj & G. Skandalis — Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. Éc. Norm. Sup.4e série 26 (1993), 425-488. Zbl0804.46078MR1235438
  3. [3] S. Baaj & G. Skandalis — Transformations pentagonales, C. R. Acad. Sci. Paris Sér. I Math.327, no. 7 (1998), 623-628. Zbl1040.37500MR1652717
  4. [4] S. Baaj & G. Skandalis — En préparation. 
  5. [5] R. Beals & P. Greiner — Calculus on Heisenberg manifolds, Annals of Mathematics Studies119, Princeton University Press, Princeton, NJ (1988). Zbl0654.58033MR953082
  6. [6] L.G. Brown, R.G. Douglas & P.A. Fillmore — Extensions of C*-algebras and K-homology, Ann. of Math.105 (1977), 265-324. Zbl0376.46036MR458196
  7. [7] P. Cartier - Homologie cyclique : rapport sur des travaux récents de Connes, Karoubi, Loday, Quillen..., Sém. Bourbaki, 1983/84, Astérisque121-122, Soc. Math. France (1985), 123-146. Zbl0556.18006MR768957
  8. [8] J. Cheeger — Spectral geometry of singular Riemannian spaces, J. Differential Geom.18, no. 4 (1983), 575-657. Zbl0529.58034MR730920
  9. [9] A. Connes - Sur la théorie non commutative de l'intégration, Lect. Notes in Math.725 (1979), 19-143. Zbl0412.46053MR548112
  10. [10] A. Connes - Noncommutative differential geometry. Chapter I : The Chern character in K-homology. Chapter II : De Rham homology and non commutative algebra, Publ. Math. Inst. Hautes Études Sci.62 (1985), 257-360. Zbl0592.46056MR823176
  11. [11] A. Connes - Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras (Kyoto, 1983), Longman Sci. Tech., Harlow, Pitman Res. Notes Math. Ser. 123 (1986), 52-144. Zbl0647.46054MR866491
  12. [12] A. Connes - Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules, K-Theory1, no. 6 (1988), 519-548. Zbl0657.46049
  13. [13] A. Connes - Non commutative geometry, Academic Press, Inc., San Diego, CA (1994). 
  14. [14] A. Connes - Geometry from the spectral point of view, Letters in Mathematical Physics34 (1995), 203-238. Zbl1042.46515MR1345552
  15. [15] A. Connes - Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.)5, no. 1 (1999), 29-106. Zbl0945.11015MR1694895
  16. [16] A. Connes & D. Kreimer — Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys.199, no. 1 (1998), 203-242. Zbl0932.16038MR1660199
  17. [17] A. Connes & D. Kreimer — Renormalization in quantum field theory and the Riemann-Hilbert problem I : The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys.210, no. 1 (2000), 249-273. Zbl1032.81026MR1748177
  18. [18] A. Connes & D. Kreimer — Renormalization in quantum field theory and the Riemann-Hilbert problem. II : The β-function, diffeomorphisms and the renormalization group, Comm. Math. Phys.216, no. 1 (2001), 215-241. Zbl1042.81059
  19. [19] A. Connes & H. Moscovici — The local index formula in noncommutative geometry, Geom. Funct. Anal5, no. 2 (1995), 174-243. Zbl0960.46048MR1334867
  20. [20] A. Connes & H. Moscovici — Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys.198, no. 1 (1998), 199-246. Zbl0940.58005MR1657389
  21. [21] A. Connes & H. Moscovici — Cyclic cohomology and Hopf algebras, Letters in Mathematical Physics48 (1999), 97-108. Zbl0941.16024MR1718047
  22. [22] A. Connes & H. Moscovici — Cyclic Cohomology and Hopf Algebra Symmetry, Letters in Mathematical Physics52 (2000), 1-28. Zbl0974.58006MR1800488
  23. [23] A. Connes & H. Moscovici — Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry (preprint 2001). Zbl1018.57013MR1929328
  24. [24] M. Crainic — Cyclic Cohomology of Hopf algebras and a Noncommutative Chern-Weil Theory (preprint 1998). MR1868538
  25. [25] I.M. Gel'fand & D.B. Fuks — Cohomologies of the Lie algebra of formal vector fields (Russian), Izv. Akad. Nauk SSSR Ser. Mat.34 (1970), 322-337. Zbl0216.20302MR266195
  26. [26] G. Godbillon — Cohomologies d'algèbres de Lie de champs de vecteurs formels, Sém. Bourbaki, 1971/72, exp. no. 421, Lect. Notes in Math.383 (1974), 69-87. Zbl0296.17010MR418112
  27. [27] J. Gracia-Bondía, J. Várilly & H. Figueroa - Elements of noncommutative geometry, Birkhäuser Advanced Texts : Basler Lehrbücher, Boston, MA (2001). Zbl0958.46039MR1789831
  28. [28] M. Hilsum & G. Skandalis — Morphismes K-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov, Ann. Sci. Éc. Norm. Sup.4e série 20 (1987), 325-390. Zbl0656.57015MR925720
  29. [29] A. Jaffe, A. Lesniewski & K. Osterwalder - Quantum K-theory. I. The Chern character, Comm. Math. Phys.118, no. 1 (1988), 1-14. Zbl0656.58048MR954672
  30. [30] G.I. Kac — Extensions of groups to ring groups, Math U.S.S.R. Sbornik5 (1968), 451-474. Zbl0205.03301
  31. [31] G.G. Kasparov — The operator K-functor and extensions of C*-algebras, Math. USSR Izv. 16 (1981), no. 3, 513-572. Translated from : Izv. Akad. Nauk. S.S.S.R. Ser. Mat.44 (1980), 571-636. Zbl0464.46054MR582160
  32. [32] C. Kassel — Le résidu non commutatif (d'après M. Wodzicki), Sém. Bourbaki, vol. 1988/89, exp. no. 708, Astérisque177-178 (1989), 199-229. Zbl0701.58054MR1040574
  33. [33] D. Kreimer — On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys.2, no. 2 (1998), 303-334. Zbl1041.81087MR1633004
  34. [34] J. Kustermans & S. Vaes — Locally compact quantum groups, Ann. Sci. Éc. Norm. Sup.4e série 33 (6) (2000), 837-934. Zbl1034.46508MR1832993
  35. [35] J.-M. Lescure - Triplets spectraux pour les pseudovariétés à singularité conique isolée, C. R. Acad. Sci. Paris Sér. I Math. 327, no. 10 (1998), 871-874. Zbl0936.46053MR1663493
  36. [36] J.-M. Lescure — Triplets spectraux pour les pseudo-variétés avec singularité conique isolée. Thèse (preprint 1997). 
  37. [37] S. Majid — Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations, J.F.A.95, no. 2 (1991), 291-319. Zbl0741.46033MR1092128
  38. [38] R. Ponge - Calcul hypoelliptique sur les variétés de Heisenberg, résidu non commutatif et géométrie pseudo-hermitienne. Thèse (preprint 2000). 
  39. [39] R.T. Seeley — Complex powers of an elliptic operator. Singular Integrals, Proc. Sympos. Pure Math., Chicago, Ill. (1966), Amer. Math. Soc., Providence, R.I. (1967), 288-307. Zbl0159.15504MR237943
  40. [40] M.E. Sweedler — Hopf algebras, Mathematics Lecture Note Series - W. A. Benjamin, Inc., New York (1969). Zbl0194.32901MR252485
  41. [41] M. Takeuchi — Matched pairs of groups and bismashed product of Hopf algebras, Comm. Alg.9 (1981), 841-882. Zbl0456.16011MR611561
  42. [42] B.L. Tsygan — Homology of matrix Lie algebras over rings and the Hochschild homology (en russe), Uspekhi Mat. Nauk38, no. 2 (230) (1983), 217-218. Zbl0518.17002MR695483
  43. [43] S. Vaes & L. Vainerman — Extensions of locally compact quantum groups and the bicrossed product construction (preprint 2001). MR1970242
  44. [44] M. Wodzicki — Noncomrrzutative residue. I. Fundamentals, K-theory, arithmetic and geometry (Moscow, 19841986-), Lecture Notes in Math.1289 (Springer, Berlin) (1987), 320-399. Zbl0649.58033MR923140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.