Locally compact quantum groups

Johan Kustermans; Stefaan Vaes

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 6, page 837-934
  • ISSN: 0012-9593

How to cite

top

Kustermans, Johan, and Vaes, Stefaan. "Locally compact quantum groups." Annales scientifiques de l'École Normale Supérieure 33.6 (2000): 837-934. <http://eudml.org/doc/82536>.

@article{Kustermans2000,
author = {Kustermans, Johan, Vaes, Stefaan},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {837-934},
publisher = {Elsevier},
title = {Locally compact quantum groups},
url = {http://eudml.org/doc/82536},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Kustermans, Johan
AU - Vaes, Stefaan
TI - Locally compact quantum groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 6
SP - 837
EP - 934
LA - eng
UR - http://eudml.org/doc/82536
ER -

References

top
  1. [1] ABE E., Hopf Algebras, Cambridge Tracts in Mathematics, Vol. 74, Cambridge University Press, Cambridge, 1980. Zbl0476.16008MR83a:16010
  2. [2] BAAJ S., Représentation régulière du groupe quantique des déplacements de Woronowicz, Astérisque 232 (1995) 11-48. Zbl0840.46036MR97a:46107
  3. [3] BAAJ S., Représentation régulière du groupe quantique Eµ(2), C. R. Acad. Sci. Paris, Série I 314 (1992) 1021-1026. Zbl0771.17011MR93f:46106
  4. [4] BAAJ S., Multiplicateurs non bornés, Thèse 3ème cycle, Université Paris-6, 1980. 
  5. [5] BAAJ S., Prolongement d'un poids, C. R. Acad. Sci., Paris, Série A 288 (1979) 1013-1015. Zbl0414.46046MR80d:46108
  6. [6] BAAJ S., SKANDALIS G., Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Scient. Éc. Norm. Sup., 4e série 26 (1993) 425-488. Zbl0804.46078MR94e:46127
  7. [7] BANICA T., Le groupe quantique compact libre U(n), Commun. Math. Phys. 190 (1997) 143-172. Zbl0906.17009MR99k:46095
  8. [8] BUSBY R.C., Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc. 132 (1968) 79-99. Zbl0165.15501MR37 #770
  9. [9] CIORĂNESCU I., ZSIDÓ L., Analytic generators for one-parameter groups, Tôhoku Math. J. 28 (1976) 327-362. Zbl0361.47014MR55 #3872
  10. [10] COMBES F., Poids associé à une algèbre hilbertienne à gauche, Compos. Math. 23 (1971) 49-77. Zbl0208.38201MR44 #5786
  11. [11] COMBES F., Poids sur une C*-algèbre, J. Math. Pures et Appl. 47 (1968) 57-100. Zbl0165.15401MR38 #5016
  12. [12] D'ANTONI C., ZSIDÓ L., Groups of linear isometries on multiplier C*-algebras, Pac. J. Math. 193 (2) (2000) 279-306. Zbl1088.46512MR2001g:46122
  13. [13] DRINFEL'D V.G., Quantum groups, Proceedings ICM Berkeley (1986) 798-820. Zbl0667.16003MR89f:17017
  14. [14] EFFROS E., RUAN Z.-J., Discrete quantum groups I : The Haar measure, Int. J. Math. 5 (5) (1994) 681-723. Zbl0824.17020MR95j:46089
  15. [15] ENOCK M., SCHWARTZ J.-M., Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, Berlin, 1992. Zbl0805.22003MR94e:46001
  16. [16] ENOCK M., VALLIN J.-M., C*-algèbres de Kac et algèbres de Kac, Proc. London Math. Soc. 66 (3) (1993) 619-650. Zbl0792.46040MR94e:46101
  17. [17] HAAGERUP U., Operator-valued weights in von Neumann algebras, I, J. Funct. Anal. 32 (1979) 175-206. Zbl0426.46046MR81e:46049a
  18. [18] HAAGERUP U., Normal weights on W*-algebras, J. Funct. Anal. 19 (1975) 302-317. Zbl0304.46043MR52 #1338
  19. [19] KIRCHBERG E., Lecture on the conference 'Invariants in operator algebras', Copenhagen, August 1992. 
  20. [20] KOELINK H.T., Addition formula for a 2-parameter family of Askey-Wilson polynomials, Preprint, KU Leuven, 1994. Zbl0844.33011
  21. [21] KOELINK H.T., On quantum groups and q-special functions, PhD-thesis, Rijksuniversiteit Leiden, 1991. Zbl0721.17014
  22. [22] KOELINK H.T., VERDING J., Spectral analysis and the Haar functional on the quantum SU(2) group, Commun. Math. Phys. 177 (1996) 399-415. Zbl0848.22029MR97a:33048
  23. [23] KUSTERMANS J., Locally compact quantum groups in the universal setting, Int. J. Math., to appear. #math/9902015. Zbl1111.46311
  24. [24] KUSTERMANS J., KMS-weights on C*-algebras, Preprint, Odense Universitet, 1997. #funct-an/9704008. 
  25. [25] KUSTERMANS J., One-parameter representations on C*-algebras, Preprint, Odense Universitet, 1997. #funct-an/9707010. 
  26. [26] KUSTERMANS J., The functional calculus of regular operators on Hilbert C*-modules revisited, Preprint, Odense Universitet, 1997. #funct-an/9706007. 
  27. [27] KUSTERMANS J., VAES S., A simple definition for locally compact quantum groups, C. R. Acad. Sci. Paris, Série I 328 (10) (1999) 871-876. Zbl0957.46037MR2000i:46051
  28. [28] KUSTERMANS J., VAES S., The operator algebra approach to quantum groups, Proc. Natl. Acad. Sc. 97 (2) (2000) 547-552. Zbl0978.46044MR2001m:46118
  29. [29] KUSTERMANS J., VAES S., Locally compact quantum groups in the von Neumann algebraic setting, Preprint, KU, Leuven, 2000. #math.OA/0005219. Zbl1034.46067
  30. [30] KUSTERMANS J., VAES S., Weight theory for C*-algebraic quantum groups, Preprint, KU Leuven & University College Cork, 1999. #math/9901063. Zbl0957.46037
  31. [31] KUSTERMANS J., VAN DAELE A., C*-algebraic quantum groups arising from algebraic quantum groups, Int. J. Math. 8 (8) (1997) 1067-1139. #q-alg/9611023. Zbl1009.46038MR99a:46130
  32. [32] LANCE C., Hilbert C*-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lect. Note Series, Vol. 210, Cambridge University Press, Cambridge, 1995. Zbl0822.46080
  33. [33] MASUDA T., NAKAGAMI Y., A von Neumann algebra framework for the duality of the quantum groups, Publ. RIMS, Kyoto University 30 (1994) 799-850. Zbl0839.46055MR96b:46103
  34. [34] MASUDA T., NAKAGAMI Y., WORONOWICZ S.L., Lectures at the Fields Institute and at the University of Warsaw, 1995. 
  35. [35] PEDERSEN G.K., C*-Algebras and their Automorphism Groups, Academic Press, London, 1979. Zbl0416.46043MR81e:46037
  36. [36] PEDERSEN G.K., TAKESAKI M., The Radon-Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973) 53-87. Zbl0262.46063MR54 #948
  37. [37] PODLEŚ P., Quantum spheres, Lett. Math. Phys. 14 (1987) 193-202. Zbl0634.46054MR89b:46081
  38. [38] PODLEŚ P., WORONOWICZ S.L., Quantum deformation of Lorentz group, Commun. Math. Phys. 130 (1990) 381-431. Zbl0703.22018MR91f:46100
  39. [39] QUAEGEBEUR J., VERDING J., A construction for weights on C*-algebras. Dual weights for C*-crossed products, Int. J. Math. 10 (1) (1999) 129-157. Zbl0956.46046MR2001d:46099
  40. [40] QUAEGEBEUR J., VERDING J., Left invariant weights and the left regular corepresentation for locally compact quantum semi-groups, Preprint, KU Leuven, 1994. 
  41. [41] RIEFFEL M.A., Compact quantum groups associated with toral subgroups, Contemp. Math. 145 (1993) 465-491. Zbl0795.17017MR94i:22022
  42. [42] RIEFFEL M.A., Deformation quantization of Heisenberg manifolds, Commun. Math. Phys. 122 (1989) 531-562. Zbl0679.46055MR90e:46060
  43. [43] RIEFFEL M.A., Integrable and proper actions on C*-algebras, and square-integrable representations of groups, 1998. #math/9809098. Zbl1047.22004
  44. [44] RIEFFEL M.A., Some solvable quantum groups. Operator algebras and topology, in : Arveson W.B. et al. (Eds.), Proceedings of the OATE 2 Conference Bucharest, Romania, 1989, Pitman Research Notes in Mathematics, Vol. 270, 1992, pp. 146-159. Zbl0804.17010
  45. [45] SAKAI S., C*-Algebras and W*-Algebras, Springer-Verlag, Berlin, 1971. Zbl0219.46042MR56 #1082
  46. [46] STRATILA S., Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells, England, 1981. Zbl0504.46043MR85g:46072
  47. [47] STRATILA S., ZSIDÓ L., Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, England, 1979. Zbl0391.46048MR81j:46089
  48. [48] TAKESAKI M., Theory of Operator Algebras I, Springer-Verlag, New York, 1979. Zbl0436.46043MR81e:46038
  49. [49] TAYLOR D.C., The strict topology for double centralizer algebras, Trans. Amer. Math. Soc. 150 (1970) 633-643. Zbl0204.14701MR44 #7302
  50. [50] VAES S., The unitary implementation of a locally compact quantum group action, J. Funct. Anal., to appear. #math.OA/0005262. Zbl1011.46058
  51. [51] VAES S., Examples of locally compact quantum groups through the bicrossed product construction, in : Proceedings of the XIIIth International Conference on Mathematical Physics, London, 2000, to appear. Zbl1045.46042
  52. [52] VAES S., A Radon-Nikodym theorem for von Neumann algebras, J. Oper. Th., to appear. #math.OA/9811122. Zbl0995.46042
  53. [53] VAES S., Hopf C*-algebras, Masters Thesis, KU Leuven, 1998. 
  54. [54] VAES S., VAN DAELE A., Hopf C*-algebras, Proc. London Math. Soc., to appear. #math.OA/9907030. Zbl1028.46100
  55. [55] VAINERMAN L.I., KAC G.I., Nonunimodular ring-groups and Hopf-von Neumann algebras, Math. USSR, Sbornik 23 (1974) 185-214. Zbl0309.46052MR50 #536
  56. [56] VAINERMAN G.I., KAC G.I., Nonunimodular ring-groups and Hopf-von Neumann algebras, Soviet Math. Dokl. 14 (1973) 1144-1148. Zbl0296.46072
  57. [57] VAKSMAN L.L., SOIBEL'MAN Y.S., Algebra of functions on the quantum group SU(2), Funct. Anal. Appl. 22 (1988) 170-181. Zbl0679.43006MR90f:17019
  58. [58] VALLIN J.-M., C*-algèbres de Hopf et C*-algèbres de Kac, Proc. London Math. Soc. 50 (3) (1985) 131-174. Zbl0577.46063MR86f:46072
  59. [59] VAN DAELE A., An algebraic framework for group duality, Adv. in Math. 140 (1998) 323-366. Zbl0933.16043MR2000g:16045
  60. [60] VAN DAELE A., Discrete quantum groups, J. Algebra 180 (1996) 431-444. Zbl0864.17012MR97a:16076
  61. [61] VAN DAELE A., The Haar measure on a compact quantum group, Proc. Amer. Math. Soc. 123 (1995) 3125-3128. Zbl0844.46032MR95m:46097
  62. [62] VAN DAELE A., Multiplier Hopf Algebras, Trans. Amer. Math. Soc. 342 (1994) 917-932. Zbl0809.16047MR94h:16075
  63. [63] VAN DAELE A., WANG S.Z., Universal quantum groups, Int. J. Math. 7 (2) (1996) 255-263. Zbl0870.17011MR97d:46090
  64. [64] VAN DAELE A., WORONOWICZ S.L., Duality for the quantum E(2) group, Pacific J. Math. 173 (2) (1996) 375-385. Zbl0868.17013MR97d:46091
  65. [65] VERDING J., Weights on C*-algebras, PhD Thesis, KU Leuven, 1995. Zbl0956.46046
  66. [66] WANG S.Z., Free Products of compact quantum groups, Commun. Math. Phys. 167 (1995) 671-692. Zbl0838.46057MR95k:46104
  67. [67] WORONOWICZ S.L., Compact quantum groups, in : Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845-884. Zbl0997.46045MR99m:46164
  68. [68] WORONOWICZ S.L., From multiplicative unitaries to quantum groups, Int. J. Math. 7 (1) (1996) 127-149. Zbl0876.46044MR96k:46136
  69. [69] WORONOWICZ S.L., Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991) 251-263. Zbl0752.17017MR93b:17058
  70. [70] WORONOWICZ S.L., Unbounded elements affiliated with C*-algebras and non-compact quantum groups, Commun. Math. Phys. 136 (1991) 399-432. Zbl0743.46080MR92b:46117
  71. [71] WORONOWICZ S.L., Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988) 35-76. Zbl0664.58044MR90e:22033
  72. [72] WORONOWICZ S.L., Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613-665. Zbl0627.58034MR88m:46079
  73. [73] WORONOWICZ S.L., Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS, Kyoto University 23 (1987) 117-181. Zbl0676.46050MR88h:46130
  74. [74] WORONOWICZ S.L., Pseudospaces, pseudogroups and Pontrjagin duality, in : Proceedings of the International Conference on Mathematical Physics (Lausanne, 1979), Lecture Notes in Physics, Vol. 116, 1980, pp. 407-412. Zbl0513.46046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.