La conjecture de Kato

Yves Meyer

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 193-206
  • ISSN: 0303-1179

How to cite

top

Meyer, Yves. "La conjecture de Kato." Séminaire Bourbaki 44 (2001-2002): 193-206. <http://eudml.org/doc/110304>.

@article{Meyer2001-2002,
author = {Meyer, Yves},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {193-206},
publisher = {Société Mathématique de France},
title = {La conjecture de Kato},
url = {http://eudml.org/doc/110304},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Meyer, Yves
TI - La conjecture de Kato
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 193
EP - 206
LA - fre
UR - http://eudml.org/doc/110304
ER -

References

top
  1. [1] P. Auscher, S. Hofmann, M. Lacey, A. Mcintosh & PH. Tchamitchian — « The solution of the Kato square root problem for second order elliptic operators on Rn », à paraître aux Annals of Maths. Zbl1128.35316
  2. [2] P. Auscher, S. Hofmann, J. Lewis & PH. Tchamitchian — « Extrapolation of Carleson measures and the analyticity of Kato's square root operator », Acta Math., à paraître. Zbl1163.35346
  3. [3] P. Auscher & PH. Tchamitchian — Square root problem for divergence operators and related topics, Astérisque, vol. 249, Société Mathématique de France, 1998. Zbl0909.35001MR1651262
  4. [4] M. Christ & J.-L. Journé — « Polynomial growth estimates for multilinear singular operators », Acta Math.159 (1987), p. 51-80. Zbl0645.42017MR906525
  5. [5] S. Hofmann & J.L. Lewis — « The Dirichlet problem for parabolic operators with singular drift terms », à paraître aux Memoirs of the Amer. Math. Soc. Zbl1149.35048
  6. [6] J.-L. Journé — « Remarks on the square root problem », Pub. Math.35 (1991), p. 299-321. Zbl0739.47009MR1103623
  7. [7] T. Kato — « Fractional powers of dissipative operators », J. Math. Soc. Japan13 (1961), p. 246-274. Zbl0113.10005MR138005
  8. [8] J.-L. Lions - « Espaces d'interpolation et domaines de puissances fractionnaires », J. Math. Soc. Japan14 (1962), p. 233-241. Zbl0108.11202MR152878
  9. [9] V.G. Maz'ya, S.A. Nazarov & B.A. Plamenevskii — « Absence of the De Giorgi-type theorems for strongly elliptic equations with complex coefficients », J. Math. Sov.28 (1985), p. 726-739. Zbl0562.35030
  10. [10] Y. Meyer & R. Coifman — Wavelets, Calderón-Zygmund operators and multilinear operators, Cambridge Studies in advanced mathematics, vol. 48, Cambridge University Press, 1997. Zbl0916.42023MR1456993

NotesEmbed ?

top

You must be logged in to post comments.