La conjecture de Kato

Yves Meyer

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 193-206
  • ISSN: 0303-1179

How to cite

top

Meyer, Yves. "La conjecture de Kato." Séminaire Bourbaki 44 (2001-2002): 193-206. <http://eudml.org/doc/110304>.

@article{Meyer2001-2002,
author = {Meyer, Yves},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {193-206},
publisher = {Société Mathématique de France},
title = {La conjecture de Kato},
url = {http://eudml.org/doc/110304},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Meyer, Yves
TI - La conjecture de Kato
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 193
EP - 206
LA - fre
UR - http://eudml.org/doc/110304
ER -

References

top
  1. [1] P. Auscher, S. Hofmann, M. Lacey, A. Mcintosh & PH. Tchamitchian — « The solution of the Kato square root problem for second order elliptic operators on Rn », à paraître aux Annals of Maths. Zbl1128.35316
  2. [2] P. Auscher, S. Hofmann, J. Lewis & PH. Tchamitchian — « Extrapolation of Carleson measures and the analyticity of Kato's square root operator », Acta Math., à paraître. Zbl1163.35346
  3. [3] P. Auscher & PH. Tchamitchian — Square root problem for divergence operators and related topics, Astérisque, vol. 249, Société Mathématique de France, 1998. Zbl0909.35001MR1651262
  4. [4] M. Christ & J.-L. Journé — « Polynomial growth estimates for multilinear singular operators », Acta Math.159 (1987), p. 51-80. Zbl0645.42017MR906525
  5. [5] S. Hofmann & J.L. Lewis — « The Dirichlet problem for parabolic operators with singular drift terms », à paraître aux Memoirs of the Amer. Math. Soc. Zbl1149.35048
  6. [6] J.-L. Journé — « Remarks on the square root problem », Pub. Math.35 (1991), p. 299-321. Zbl0739.47009MR1103623
  7. [7] T. Kato — « Fractional powers of dissipative operators », J. Math. Soc. Japan13 (1961), p. 246-274. Zbl0113.10005MR138005
  8. [8] J.-L. Lions - « Espaces d'interpolation et domaines de puissances fractionnaires », J. Math. Soc. Japan14 (1962), p. 233-241. Zbl0108.11202MR152878
  9. [9] V.G. Maz'ya, S.A. Nazarov & B.A. Plamenevskii — « Absence of the De Giorgi-type theorems for strongly elliptic equations with complex coefficients », J. Math. Sov.28 (1985), p. 726-739. Zbl0562.35030
  10. [10] Y. Meyer & R. Coifman — Wavelets, Calderón-Zygmund operators and multilinear operators, Cambridge Studies in advanced mathematics, vol. 48, Cambridge University Press, 1997. Zbl0916.42023MR1456993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.