Dynamiques génériques : hyperbolicité et transitivité

Christian Bonatti

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 225-242
  • ISSN: 0303-1179

How to cite

top

Bonatti, Christian. "Dynamiques génériques : hyperbolicité et transitivité." Séminaire Bourbaki 44 (2001-2002): 225-242. <http://eudml.org/doc/110308>.

@article{Bonatti2001-2002,
author = {Bonatti, Christian},
journal = {Séminaire Bourbaki},
keywords = {transitivity; hyperbolic dynamics; Smale's spectral decomposition},
language = {fre},
pages = {225-242},
publisher = {Société Mathématique de France},
title = {Dynamiques génériques : hyperbolicité et transitivité},
url = {http://eudml.org/doc/110308},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Bonatti, Christian
TI - Dynamiques génériques : hyperbolicité et transitivité
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 225
EP - 242
LA - fre
KW - transitivity; hyperbolic dynamics; Smale's spectral decomposition
UR - http://eudml.org/doc/110308
ER -

References

top
  1. [Ab] F. Abdenur — « Generic robustness of spectral decompositions », preprint IMPA, 2001. 
  2. [Ar] M.-C. Arnaud — « Création de connexions en topologie C1 », Ergod. Th. & Dynam. Systems21 (2001), p. 339-381. Zbl0997.37007MR1827109
  3. [BD] CH. Bonatti & L.J. Díaz — « Connexions hétéroclines et généricité d'une infinité de puits ou de sources », Ann. Scient. Éc. Norm. Sup., 4e série 32 (1999), p. 135-150. Zbl0944.37012MR1670524
  4. [BD2] _, « On maximal transitive sets of generic diffeomorphisms », Publ. Math. Inst. Hautes Études Sci.96 (2002), p. 171-197. Zbl1032.37011MR1985032
  5. [BDP] CH. Bonatti, L.J. Díaz & E. Pujals — « A C1—generic dichotomy for diffeomorphisms : weak forms of hyperbolicity or infinitely many sinks or sources », à paraître aux Annals of Math. Zbl1049.37011
  6. [BV] CH. Bonatti & M. Viana — « SRB for partially hyperbolic attractors : the contracting case », Israel Journal of Math.115 (2000), p. 157-193. Zbl0996.37033MR1749677
  7. [BrPe] M. Brin & YA. Pesin — « Partially hyperbolic dynamical systems », Izv. Acad. Nauk. SSSR1 (1974), p. 177-212. Zbl0309.58017
  8. [CM] C. Carballo & C. Morales - « Homoclinic classes and finitude of attractors for vector fields on n-manifolds », Preprint, 2001. MR1934436
  9. [CMP] C. Carballo, C. Morales & M.J.P. Fico — « Homoclinic class for C1- generic vector fields », preprint PUC-Rio, à paraître à Ergod. Th. & Dynam. Systems, 2000. 
  10. [DPU] L.J. Díaz, E. Pujals & R. Ures - « Partial hyperbolicity and robust transitivity », Acta Math.183 (1999), p. 1-43. Zbl0987.37020MR1719547
  11. [F] J. Franks — « Necessary conditions for stability of diffeomorphisms », Trans. Amer. Math. Soc.158 (1971), p. 301-308. Zbl0219.58005MR283812
  12. [Ha] S. Hayashi — « Connecting invariant manifolds and the solution of the C1- stability and Ω-stability conjectures for flows », Ann. of Math.145 (1997), p. 81-137. Zbl0871.58067
  13. [HPS] M. Hirsch, C. Pugh & M. Shub — Invariant manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977. Zbl0355.58009MR501173
  14. [Ma1] R. Mañé — « An ergodic closing lemma », Annals of Math.116 (1982), p. 503- 540. Zbl0511.58029MR678479
  15. [Ma2] _, « Contributions to the stability conjecture », Topology17 (1978), p. 386-396. Zbl0405.58035MR516217
  16. [N] S. Newhouse — « Diffeomorphisms with infinitely many sinks », Topology13 (1974), p. 9-18. Zbl0275.58016MR339291
  17. [PT] J. Palis & F. Takens — Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge University Press, 1993. Zbl0790.58014MR1237641
  18. [Pu] C. Pugh — « The closing lemma », Amer. J. Math.89 (1967), p. 956-1009. Zbl0167.21803MR226669
  19. [Sh] M. Shub — « Topological transitive diffeomorphism on T4 », Lect. Notes in Math., vol. 206, Springer-Verlag, 1971, p. 39. 
  20. [Sm] S. Smale — « Differentiable dynamical systems », Bull. Amer. Math. Soc.73 (1967), p. 747-817. Zbl0202.55202MR228014
  21. [WX] L. Wen & Z. Xia — « C1 connecting lemmas », Trans. Amer. Math. Soc.352 (2000), p. 5213-5230. Zbl0947.37018MR1694382

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.