Connexions hétéroclines et généricité d'une infinité de puits et de sources

Christian Bonatti; Lorenzo Díaz

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 1, page 135-150
  • ISSN: 0012-9593

How to cite


Bonatti, Christian, and Díaz, Lorenzo. "Connexions hétéroclines et généricité d'une infinité de puits et de sources." Annales scientifiques de l'École Normale Supérieure 32.1 (1999): 135-150. <>.

author = {Bonatti, Christian, Díaz, Lorenzo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hyperbolic periodic points; diffeomorphism; transitive set},
language = {fre},
number = {1},
pages = {135-150},
publisher = {Elsevier},
title = {Connexions hétéroclines et généricité d'une infinité de puits et de sources},
url = {},
volume = {32},
year = {1999},

AU - Bonatti, Christian
AU - Díaz, Lorenzo
TI - Connexions hétéroclines et généricité d'une infinité de puits et de sources
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 1
SP - 135
EP - 150
LA - fre
KW - hyperbolic periodic points; diffeomorphism; transitive set
UR -
ER -


  1. [AS] R. ABRAHAM et S. SMALE, Nongenericity of &Ω-stability, Global Analysis I, Proc. Symp. Pure Math. A.M.S., 14, p. 5-8, 1968. Zbl0215.25102MR42 #6867
  2. [BD] R. Ch. BONATTI et L. J. DÍAZ, Persistence of transitive diffeomorphims, Ann. Math., 143, p. 367-396, 1995. 
  3. [BV] R. Ch. BONATTI et M. VIANA, SRB measures for partially hyperbolic attractors : the contracting case, à paraître dans Israel J. of Math. 
  4. [D] R. L. J. DÍAZ, Robust nonhyperbolic dynamics at heterodimensional cycles, Erg. Th. and Dyn. Sys., 15, p. 291-315, 1995. Zbl0831.58035
  5. [DPU] R. L. J. DÍAZ, E. PUJALS et R. URES, Partial hyperbolicity and robust transitivity, prepublication PUC-Rio 1998. 
  6. [F] J. FRANKS, Necessary conditions for the stability of diffeomorphisms, Trans. A.M.S., 158, p. 301-308, 1971. Zbl0219.58005MR44 #1042
  7. [H] R. S. HAYASHI, Connecting invariant manifolds and the solution of the C1-stability and &Ω-stability conjectures for flows, Ann. of Math., 145, p. 81-137, 1997. Zbl0871.58067
  8. [HPS] R. M. HIRSCH, C. PUGH et M. SHUB, Invariant manifolds, Lecture Notes in Math., p. 583, Springer Verlag, 1977. Zbl0355.58009
  9. [M1] R. R. MAÑÉ, Contributions to the C1-stability conjecture, Topology, 17, p. 386-396, 1978. Zbl0405.58035MR84b:58061
  10. [M2] R. R. MAÑÉ, An ergodic closing lemma, Ann. Math., 116, p. 541-558, 1982. Zbl0511.58029MR84f:58070
  11. [N1] R. S. NEWHOUSE, Diffeomorphisms with infinitely many sinks, Topology, 13, p. 9-18, 1974. Zbl0275.58016MR49 #4051
  12. [N2] R. S. NEWHOUSE, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHES, 50, p. 101-151, 1979. Zbl0445.58022MR82e:58067
  13. [PT] R. J. PALIS et F. TAKENS, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, p. 35, 1993. Zbl0790.58014MR94h:58129
  14. [PV] R. J. PALIS et M. VIANA, High dimensional diffeomorphisms displaying infinitely many sinks, Ann. of Math., 140, p. 207-250, 1994. Zbl0817.58004
  15. [R] R. N. ROMERO, Persistence of homoclinic tangencies in higher dimension, Erg. Th. and Dyn. Sys., 15, p. 735-759, 1995. Zbl0833.58020MR96e:58118
  16. [Si1] R. C. SIMON, A 3-dimensional Abrahame-Smale example Proc. A.M.S. vol 34 (2), p. 629-630 1972. Zbl0259.58006
  17. [Si2] R. C. SIMON, On a classification of a Baire set of diffeomorphisms Bull. A.M.S. vol 77 (5), p. 783-787, 1971. Zbl0227.58005MR44 #2242
  18. [S] R. S. SMALE, Differentiable dynamical systems, Bull. A.M.S., 73, p. 147-817, 1967. Zbl0202.55202MR37 #3598
  19. [U] R. R. URES, Abundance of hyperbolicity in the C1-topology, Ann. Scient. École Norm. Sup. Paris, 4e série, 28, p. 747-760, 1995. Zbl0989.37013MR96i:58135
  20. [YA] R. J. A. YORKE et K. T. ALLIGOOD, Cascades of period doubling bifurcations : a pre-requisite for horseshoes, Bull. A.M.S., 9, p. 319-322, 1983. Zbl0541.58039

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.