Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan
D. Iftimie; M.C. Lopes Filho; H.J. Nussenzveig Lopes
Séminaire Équations aux dérivées partielles (2001-2002)
- page 1-8
Access Full Article
topHow to cite
topIftimie, D., Lopes Filho, M.C., and Nussenzveig Lopes, H.J.. "Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan." Séminaire Équations aux dérivées partielles (2001-2002): 1-8. <http://eudml.org/doc/11036>.
@article{Iftimie2001-2002,
author = {Iftimie, D., Lopes Filho, M.C., Nussenzveig Lopes, H.J.},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan},
url = {http://eudml.org/doc/11036},
year = {2001-2002},
}
TY - JOUR
AU - Iftimie, D.
AU - Lopes Filho, M.C.
AU - Nussenzveig Lopes, H.J.
TI - Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 8
LA - eng
UR - http://eudml.org/doc/11036
ER -
References
top- G. K. Batchelor, An introduction to fluid dynamics, Cambridge Univ. Press, Cambridge, 1967. Zbl0152.44402MR1744638
- D. Benedetto, E. Caglioti and C. Marchioro, On the motion of a vortex ring with a sharply concentrated vorticity, Math. Methods Appl. Sci. 23 (2000), no. 2, 147–168. Zbl0956.35109MR1738349
- G. Burton, Steady symmetric vortex pairs and rearrangements Proc. Roy. Soc. Edinburgh Sect. A 108(1988) 269–290. Zbl0658.76016MR943803
- J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553–586. Zbl0780.35073MR1102579
- J. Hounie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity, SIAM J. Math. Anal. 31 (1999), no. 1, 134–153 (electronic). Zbl0961.35119MR1742302
- D. Iftimie, Évolution de tourbillon à support compact, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), Exp. No. IV, 1999.
- D. Iftimie, T. C. Sideris and P. Gamblin, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations 24 (1999), no. 9-10, 1709–1730. Zbl0937.35137MR1708106
- D. Iftimie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Large time behavior for vortex evolution in the half-plane, preprint. Zbl1037.76009
- Jianfu Yang, Existence and asymptotic behavior in planar vortex theory, Math. Models Meth. in Appl. Sci. 1(1991), 461–475. Zbl0738.76009MR1144183
- P. Lax, Integrals of nonlinear evolution equations and solitary waves, Comm. Pure Appl. Math. 21(1968), 467–490. Zbl0162.41103MR235310
- M. C. Lopes Filho and H. J. Nussenzveig Lopes, An extension of Marchioro’s bound on the growth of a vortex patch to flows with vorticity, SIAM J. Math. Anal. 29 (1998), no. 3, 596–599. Zbl0912.35134
- M. C. Lopes Filho, H. J. Nussenzveig Lopes and Zhouping Xin, Existence of vortex sheets with reflection symmetry in two space dimensions, Arch. Ration. Mech. Anal. 158 (2001), no. 3, 235–257. Zbl1058.35176MR1842346
- C. Marchioro, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys. 164 (1994), no. 3, 507–524. Zbl0839.76010MR1291243
- C. Marchioro, On the growth of the vorticity support for an incompressible non-viscous fluid in a two-dimensional exterior domain, Math. Methods Appl. Sci. 19 (1996), no. 1, 53–62. Zbl0845.35089MR1365263
- C. Marchioro, On the inviscid limit for a fluid with a concentrated vorticity, Comm. Math. Phys. 196 (1998), no. 1, 53–65. Zbl0911.35086MR1643505
- C. Marchioro, Large smoke rings with concentrated vorticity, J. Math. Phys. 40 (1999), no. 2, 869–883. Zbl0969.76014MR1674263
- C. Maffei and C. Marchioro, A confinement result for axisymmetric fluids, Rend. Sem. Mat. Univ. Padova 105 (2001), 125–137. Zbl1165.76318MR1834985
- J. Norbury, Steady planar vortex pairs in an ideal fluid, Comm. Pure and Appl. Math. 28(1975), 679–700. Zbl0338.76015MR399645
- Ph. Serfati, Borne en temps des caractéristiques de l’équation d’Euler D à tourbillon positif et localisation pour le modèle point-vortex, preprint, 1998.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.