Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan

D. Iftimie; M.C. Lopes Filho; H.J. Nussenzveig Lopes

Séminaire Équations aux dérivées partielles (2001-2002)

  • page 1-8

How to cite

top

Iftimie, D., Lopes Filho, M.C., and Nussenzveig Lopes, H.J.. "Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan." Séminaire Équations aux dérivées partielles (2001-2002): 1-8. <http://eudml.org/doc/11036>.

@article{Iftimie2001-2002,
author = {Iftimie, D., Lopes Filho, M.C., Nussenzveig Lopes, H.J.},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan},
url = {http://eudml.org/doc/11036},
year = {2001-2002},
}

TY - JOUR
AU - Iftimie, D.
AU - Lopes Filho, M.C.
AU - Nussenzveig Lopes, H.J.
TI - Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 8
LA - eng
UR - http://eudml.org/doc/11036
ER -

References

top
  1. G. K. Batchelor, An introduction to fluid dynamics, Cambridge Univ. Press, Cambridge, 1967. Zbl0152.44402MR1744638
  2. D. Benedetto, E. Caglioti and C. Marchioro, On the motion of a vortex ring with a sharply concentrated vorticity, Math. Methods Appl. Sci. 23 (2000), no. 2, 147–168. Zbl0956.35109MR1738349
  3. G. Burton, Steady symmetric vortex pairs and rearrangements Proc. Roy. Soc. Edinburgh Sect. A 108(1988) 269–290. Zbl0658.76016MR943803
  4. J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553–586. Zbl0780.35073MR1102579
  5. J. Hounie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity, SIAM J. Math. Anal. 31 (1999), no. 1, 134–153 (electronic). Zbl0961.35119MR1742302
  6. D. Iftimie, Évolution de tourbillon à support compact, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), Exp. No. IV, 1999. 
  7. D. Iftimie, T. C. Sideris and P. Gamblin, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations 24 (1999), no. 9-10, 1709–1730. Zbl0937.35137MR1708106
  8. D. Iftimie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Large time behavior for vortex evolution in the half-plane, preprint. Zbl1037.76009
  9. Jianfu Yang, Existence and asymptotic behavior in planar vortex theory, Math. Models Meth. in Appl. Sci. 1(1991), 461–475. Zbl0738.76009MR1144183
  10. P. Lax, Integrals of nonlinear evolution equations and solitary waves, Comm. Pure Appl. Math. 21(1968), 467–490. Zbl0162.41103MR235310
  11. M. C. Lopes Filho and H. J. Nussenzveig Lopes, An extension of Marchioro’s bound on the growth of a vortex patch to flows with L p vorticity, SIAM J. Math. Anal. 29 (1998), no. 3, 596–599. Zbl0912.35134
  12. M. C. Lopes Filho, H. J. Nussenzveig Lopes and Zhouping Xin, Existence of vortex sheets with reflection symmetry in two space dimensions, Arch. Ration. Mech. Anal. 158 (2001), no. 3, 235–257. Zbl1058.35176MR1842346
  13. C. Marchioro, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys. 164 (1994), no. 3, 507–524. Zbl0839.76010MR1291243
  14. C. Marchioro, On the growth of the vorticity support for an incompressible non-viscous fluid in a two-dimensional exterior domain, Math. Methods Appl. Sci. 19 (1996), no. 1, 53–62. Zbl0845.35089MR1365263
  15. C. Marchioro, On the inviscid limit for a fluid with a concentrated vorticity, Comm. Math. Phys. 196 (1998), no. 1, 53–65. Zbl0911.35086MR1643505
  16. C. Marchioro, Large smoke rings with concentrated vorticity, J. Math. Phys. 40 (1999), no. 2, 869–883. Zbl0969.76014MR1674263
  17. C. Maffei and C. Marchioro, A confinement result for axisymmetric fluids, Rend. Sem. Mat. Univ. Padova 105 (2001), 125–137. Zbl1165.76318MR1834985
  18. J. Norbury, Steady planar vortex pairs in an ideal fluid, Comm. Pure and Appl. Math. 28(1975), 679–700. Zbl0338.76015MR399645
  19. Ph. Serfati, Borne en temps des caractéristiques de l’équation d’Euler 2 D à tourbillon positif et localisation pour le modèle point-vortex, preprint, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.