Kinetic methods for Line-energy Ginzburg–Landau models

Pierre-Emmanuel Jabin[1]; Benoît Perthame[1]

  • [1] Département de Mathématiques et Applications, UMR8553, Ecole Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France

Séminaire Équations aux dérivées partielles (2001-2002)

  • Volume: 2001-2002, page 1-10

How to cite

top

Jabin, Pierre-Emmanuel, and Perthame, Benoît. "Kinetic methods for Line-energy Ginzburg–Landau models." Séminaire Équations aux dérivées partielles 2001-2002 (2001-2002): 1-10. <http://eudml.org/doc/11044>.

@article{Jabin2001-2002,
affiliation = {Département de Mathématiques et Applications, UMR8553, Ecole Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France; Département de Mathématiques et Applications, UMR8553, Ecole Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France},
author = {Jabin, Pierre-Emmanuel, Perthame, Benoît},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Kinetic methods for Line-energy Ginzburg–Landau models},
url = {http://eudml.org/doc/11044},
volume = {2001-2002},
year = {2001-2002},
}

TY - JOUR
AU - Jabin, Pierre-Emmanuel
AU - Perthame, Benoît
TI - Kinetic methods for Line-energy Ginzburg–Landau models
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2001-2002
SP - 1
EP - 10
LA - eng
UR - http://eudml.org/doc/11044
ER -

References

top
  1. A. Aftalion and R. L. Jerrard, Shape of vortices for a rotating Bose Einstein condensate. Preprint cond-mat/0204475. Zbl1050.82502
  2. F. Alouges, T. Rivière and S. Serfaty, Néel walls and cross-tie walls for micromagnetic materials having a strong planar anisotropy. ESAIM:COCV (2002), volume in memory of J.-L. Lions. Zbl1092.82047
  3. L. Ambrosio, B. Kirchheim, M. Lecumberry and T. Rivière, On the rectifiability of defect measures arising in a micromagnetics model. Preprint 2002. Zbl1055.49008MR1971988
  4. L. Ambrosio, M. Lecumberry and T. Rivière, A viscosity property of minimizing micromagnetic configurations. Preprint. Zbl1121.35309MR1959737
  5. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. PDE, 9 (1999), 327–355. Zbl0960.49013MR1731470
  6. P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for grasient fields. Proc. Roy. Soc. Edinburgh, 129A (1999), 1–17. Zbl0923.49008MR1669225
  7. F. Béthuel, H. Brézis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhauser (1994). Zbl0802.35142MR1269538
  8. Y. Brenier and L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré, Analyse non-linéaire, 15 (1998), 169–190. Zbl0893.35068MR1614638
  9. F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory. Series in Appl. Math., Gauthiers-Villars (2000). Zbl0979.82048MR2065070
  10. A. Desimone, R.V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions. To appear in Proc. Roy. Soc. Edinburgh. Zbl0986.49009
  11. A. Desimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures, a paradigm of multiscale problems. To appear in Proceedings of ICIAM, (1999). Zbl0991.82038MR1824443
  12. R.J. DiPerna, P.-L. Lions and Y. Meyer, L p regularity of velocity averages. Ann. I.H.P. Anal. Non Linéaire , 8(3–4) (1991), 271–287. Zbl0763.35014MR1127927
  13. R.T. Glassey, The Cauchy problem in kinetic theory, SIAM publications, Philadelphia (1996). Zbl0858.76001MR1379589
  14. F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 26 (1988), 110-125. Zbl0652.47031MR923047
  15. P.-E. Jabin and B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math., 54 (2001), 1096–1109. Zbl1124.35312MR1835383
  16. P.-E. Jabin and B. Perthame, Regularity in kinetic formulations via averaging lemmas. ESAIM:COCV (2002), volume in memory of J.-L. Lions. Zbl1065.35185MR1932972
  17. P.E. Jabin, F. Otto and B. Perthame, Line–energy Ginzburg–Landau models: zero–energy states. Ann. Sc. Norm. Sup. di Pisa, Cl. Scienze, to appear. Zbl1072.35051MR1994807
  18. W. Jin and R. V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci, 10 (2000), 355–390. Zbl0973.49009MR1752602
  19. M. Lecumberry and T. Rivière, Regularity for micromagnetic configurations having zero jump energy. To appear in Calc. of Var. and PDE (2002). Zbl1021.35023MR1938820
  20. P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7, (1994), 169–191. Zbl0820.35094MR1201239
  21. P.-L. Lions, B. Perthame and E. Tadmor, Existence of entropy solutions to isentropic gas dynamics system in Eulerian and Lagrangian variables. Comm. Math. Phys. , 163 (1994), 415–431. Zbl0799.35151MR1284790
  22. B. Perthame, Kinetic formulations. Oxford University Press (to appear). Zbl1082.35004MR2064166
  23. B. Perthame and P.E. Souganidis, A limiting case for velocity averaging. Ann. Sci. École Norm. Sup.(4), 31 (1998), 591–598. Zbl0956.45010MR1634024
  24. T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math., 54 (2001), 294–338. Zbl1031.35142MR1809740
  25. T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. To appear in Comm. in PDE. Zbl1094.35125MR1974456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.