Kinetic methods for Line-energy Ginzburg–Landau models
Pierre-Emmanuel Jabin[1]; Benoît Perthame[1]
- [1] Département de Mathématiques et Applications, UMR8553, Ecole Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France
Séminaire Équations aux dérivées partielles (2001-2002)
- Volume: 2001-2002, page 1-10
Access Full Article
topHow to cite
topJabin, Pierre-Emmanuel, and Perthame, Benoît. "Kinetic methods for Line-energy Ginzburg–Landau models." Séminaire Équations aux dérivées partielles 2001-2002 (2001-2002): 1-10. <http://eudml.org/doc/11044>.
@article{Jabin2001-2002,
affiliation = {Département de Mathématiques et Applications, UMR8553, Ecole Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France; Département de Mathématiques et Applications, UMR8553, Ecole Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France},
author = {Jabin, Pierre-Emmanuel, Perthame, Benoît},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Kinetic methods for Line-energy Ginzburg–Landau models},
url = {http://eudml.org/doc/11044},
volume = {2001-2002},
year = {2001-2002},
}
TY - JOUR
AU - Jabin, Pierre-Emmanuel
AU - Perthame, Benoît
TI - Kinetic methods for Line-energy Ginzburg–Landau models
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2001-2002
SP - 1
EP - 10
LA - eng
UR - http://eudml.org/doc/11044
ER -
References
top- A. Aftalion and R. L. Jerrard, Shape of vortices for a rotating Bose Einstein condensate. Preprint cond-mat/0204475. Zbl1050.82502
- F. Alouges, T. Rivière and S. Serfaty, Néel walls and cross-tie walls for micromagnetic materials having a strong planar anisotropy. ESAIM:COCV (2002), volume in memory of J.-L. Lions. Zbl1092.82047
- L. Ambrosio, B. Kirchheim, M. Lecumberry and T. Rivière, On the rectifiability of defect measures arising in a micromagnetics model. Preprint 2002. Zbl1055.49008MR1971988
- L. Ambrosio, M. Lecumberry and T. Rivière, A viscosity property of minimizing micromagnetic configurations. Preprint. Zbl1121.35309MR1959737
- L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. PDE, 9 (1999), 327–355. Zbl0960.49013MR1731470
- P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for grasient fields. Proc. Roy. Soc. Edinburgh, 129A (1999), 1–17. Zbl0923.49008MR1669225
- F. Béthuel, H. Brézis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhauser (1994). Zbl0802.35142MR1269538
- Y. Brenier and L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré, Analyse non-linéaire, 15 (1998), 169–190. Zbl0893.35068MR1614638
- F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory. Series in Appl. Math., Gauthiers-Villars (2000). Zbl0979.82048MR2065070
- A. Desimone, R.V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions. To appear in Proc. Roy. Soc. Edinburgh. Zbl0986.49009
- A. Desimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures, a paradigm of multiscale problems. To appear in Proceedings of ICIAM, (1999). Zbl0991.82038MR1824443
- R.J. DiPerna, P.-L. Lions and Y. Meyer, regularity of velocity averages. Ann. I.H.P. Anal. Non Linéaire , 8(3–4) (1991), 271–287. Zbl0763.35014MR1127927
- R.T. Glassey, The Cauchy problem in kinetic theory, SIAM publications, Philadelphia (1996). Zbl0858.76001MR1379589
- F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 26 (1988), 110-125. Zbl0652.47031MR923047
- P.-E. Jabin and B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math., 54 (2001), 1096–1109. Zbl1124.35312MR1835383
- P.-E. Jabin and B. Perthame, Regularity in kinetic formulations via averaging lemmas. ESAIM:COCV (2002), volume in memory of J.-L. Lions. Zbl1065.35185MR1932972
- P.E. Jabin, F. Otto and B. Perthame, Line–energy Ginzburg–Landau models: zero–energy states. Ann. Sc. Norm. Sup. di Pisa, Cl. Scienze, to appear. Zbl1072.35051MR1994807
- W. Jin and R. V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci, 10 (2000), 355–390. Zbl0973.49009MR1752602
- M. Lecumberry and T. Rivière, Regularity for micromagnetic configurations having zero jump energy. To appear in Calc. of Var. and PDE (2002). Zbl1021.35023MR1938820
- P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7, (1994), 169–191. Zbl0820.35094MR1201239
- P.-L. Lions, B. Perthame and E. Tadmor, Existence of entropy solutions to isentropic gas dynamics system in Eulerian and Lagrangian variables. Comm. Math. Phys. , 163 (1994), 415–431. Zbl0799.35151MR1284790
- B. Perthame, Kinetic formulations. Oxford University Press (to appear). Zbl1082.35004MR2064166
- B. Perthame and P.E. Souganidis, A limiting case for velocity averaging. Ann. Sci. École Norm. Sup.(4), 31 (1998), 591–598. Zbl0956.45010MR1634024
- T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math., 54 (2001), 294–338. Zbl1031.35142MR1809740
- T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. To appear in Comm. in PDE. Zbl1094.35125MR1974456
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.