symmetry and QCD: finite temperature and density.
Page 1 Next
Ogilvie, Michael C., Meisinger, Peter N. (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Bolina, Oscar, Contucci, Pierluigi, Nachtergaele, Bruno, Starr, Shannon (2000)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Sylvia Pulmannová (1978)
Mathematica Slovaca
Jean Bourgain, Aynur Bulut (2014)
Journal of the European Mathematical Society
We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...
Persi Diaconis (2005)
Annales de l'I.H.P. Probabilités et statistiques
Stefan Adams, Tony Dorlas (2008)
Annales de l'I.H.P. Probabilités et statistiques
We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two...
Links, Jon, Hibberd, Katrina E. (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
V. P. Belavkin, P. Staszewski (1982)
Annales de l'I.H.P. Physique théorique
Gavrilik, Alexandre M. (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
A. Giro, J.A. Padro (1987)
Qüestiió
Antoni Giró Roca, Joan Angel Padró (1987)
Qüestiió
Molecular dynamics simulation method for the study of condensed phases of matter is described in this paper. Computer programs for the simulation of atomic motion have been developed. Time-saving techniques, like the cellular method have been incorporated in order to optimize the available computer resources. We have applied this method to the simulation of Argon near its melting point. Differences in the structure, thermodynamic properties and time correlation functions of solid and liquid phases...
Daniel Kastler (1992)
Recherche Coopérative sur Programme n°25
Christian D. Jäkel (1998)
Annales de l'I.H.P. Physique théorique
M. Fannes, B. Nachtergaele, R. F. Werner (1992)
Annales de l'I.H.P. Physique théorique
Palle E.T. Jorgensen (1978)
Mathematische Annalen
Arnaud Anantharaman, Eric Cancès (2009)
Annales de l'I.H.P. Analyse non linéaire
Doyon, Benjamin (2007)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Michel Planat (2002)
Journal de théorie des nombres de Bordeaux
We describe a new model of massless thermal bosons which predicts an hyperbolic fluctuation spectrum at low frequencies. It is found that the partition function per mode is the Euler generating function for unrestricted partitions ). Thermodynamical quantities carry a strong arithmetical structure : they are given by series with Fourier coefficients equal to summatory functions of the power of divisors, with for the free energy, for the number of particles and for the internal energy. Low...
Pierre-Emmanuel Jabin, Benoît Perthame (2001/2002)
Séminaire Équations aux dérivées partielles
Adams, Stefan, Bru, Jean-Bernard, König, Wolfgang (2006)
Electronic Journal of Probability [electronic only]
Page 1 Next