Histoire d'un théorème de Bessaga et Pełczynski

Robert Phelps

Séminaire Choquet. Initiation à l'analyse (1969-1970)

  • Volume: 9, Issue: 2, page 1-7

How to cite

top

Phelps, Robert. "Histoire d'un théorème de Bessaga et Pełczynski." Séminaire Choquet. Initiation à l'analyse 9.2 (1969-1970): 1-7. <http://eudml.org/doc/110447>.

@article{Phelps1969-1970,
author = {Phelps, Robert},
journal = {Séminaire Choquet. Initiation à l'analyse},
language = {fre},
number = {2},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {Histoire d'un théorème de Bessaga et Pełczynski},
url = {http://eudml.org/doc/110447},
volume = {9},
year = {1969-1970},
}

TY - JOUR
AU - Phelps, Robert
TI - Histoire d'un théorème de Bessaga et Pełczynski
JO - Séminaire Choquet. Initiation à l'analyse
PY - 1969-1970
PB - Secrétariat mathématique
VL - 9
IS - 2
SP - 1
EP - 7
LA - fre
UR - http://eudml.org/doc/110447
ER -

References

top
  1. [1] Asplund ( Edgar). - Fréchet differentiability of convex functions, Acta Math., Uppsala, t. 121, 1968, p. 31-47. Zbl0162.17501MR231199
  2. [2] Bessaga ( C.) and Pełczynski ( A.). - On extreme points in separable conjugate spaces, Israel J. of Math., t. 4, 1966, p. 262-264. Zbl0145.16102
  3. [3] Bourgin ( R.). - Barycenters of measures on certain non-compact convex sets, Trans. Amer. math. Soc. (à paraître). Zbl0208.37502
  4. [4] Khurana ( S.S.). - Measures and barycenters of measures on convex sets in locally convex spaces, I and II, J. of math. Anal. and Appl., t. 27, 1969, p. 103-115 ; et t. 28, 1969, p. 222-229. Zbl0183.13203MR243309
  5. [5] Lindenstrauss ( J.). - On operators which attain their norm, Israel J. of Math., t. 1, 1963, p. 139-148. Zbl0127.06704MR160094
  6. [6] Lindenstrauss ( J.). - On extreme points in l1 , Israel J. of Math., t. 4, 1966, p. 59-61. Zbl0145.16101MR200701
  7. [7] Lindenstrauss ( J.). - Weakly compact sets and the Banach spaces they generate, Proceedings of symposium on infinite dimensional topology [1967. Baton Rouge] (à paraître). Zbl0232.46019
  8. [8] Namioka ( I.) and Asplund ( E.). - A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. math. Soc., t. 73, 1967, p. 443-445. Zbl0177.40404MR209904
  9. [9] Namioka ( I.). - Neighbourhoods of extreme points, Israel J. of Math., t. 5, 1967, p. 145-152. Zbl0177.40501MR221271
  10. [10] Phillips ( R.S.). - On weakly compact subsets of a Banach space, Amer. J. of Math., t. 65, 1943, p. 108-136. Zbl0063.06212MR7938
  11. [11] Rieffel ( M.A.). - Dentable subsets of Banach spaces, with application to a Radon-Nikodym theorem, Functional analysis, Proceedings of a conference held at Irvine, 1966, p. 71-77. - Washington, Thompson Book Company ; London, Academic Press, 1967. Zbl0213.13703MR222618
  12. [12] Ryll-Nardzewski ( C.). - On fixed points of semigroups of endomorphisms of linear spaces, Proceedings of the 5th Berkeley Symposium on mathematical statistics and probability [1965/66. Berkeley], Vol. II, part I. - Berkeley, University of California Press. Zbl0189.17501MR215134
  13. [13] Trojanskij ( S.). - On locally uniformly convex and differentiable norms in certain unseparable Banach spaces, Studia Math., Warszawa, t. 37 (à paraître). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.