Espaces localement convexes séparés différentiables
Séminaire Choquet. Initiation à l'analyse (1976-1977)
- Volume: 16, page 1-14
Access Full Article
topHow to cite
topGjinushi, Skender. "Espaces localement convexes séparés différentiables." Séminaire Choquet. Initiation à l'analyse 16 (1976-1977): 1-14. <http://eudml.org/doc/110551>.
@article{Gjinushi1976-1977,
author = {Gjinushi, Skender},
journal = {Séminaire Choquet. Initiation à l'analyse},
keywords = {W*-Strongly Exposed Point; Topological Dual; Convex Function; Strong Topology; W*-Compact Convex Equicontinuous Subset; W*-Dentable; Frechet Space; Quasimetrisable Dual},
language = {fre},
pages = {1-14},
publisher = {Secrétariat mathématique},
title = {Espaces localement convexes séparés différentiables},
url = {http://eudml.org/doc/110551},
volume = {16},
year = {1976-1977},
}
TY - JOUR
AU - Gjinushi, Skender
TI - Espaces localement convexes séparés différentiables
JO - Séminaire Choquet. Initiation à l'analyse
PY - 1976-1977
PB - Secrétariat mathématique
VL - 16
SP - 1
EP - 14
LA - fre
KW - W*-Strongly Exposed Point; Topological Dual; Convex Function; Strong Topology; W*-Compact Convex Equicontinuous Subset; W*-Dentable; Frechet Space; Quasimetrisable Dual
UR - http://eudml.org/doc/110551
ER -
References
top- [1] Asplund ( E.). - Fréchet differentiability of convex fonctions, Acta Math., t. 121, 1968, p. 31-47. Zbl0162.17501MR231199
- [2] Asplund ( E.). - Boundedly Krein-compact spaces, "Proceedings of functional analysis week [1969. Aarhus]", p, 1-4. - Aarhus, Matematik Inst., Aarhus Univ., 1969. Zbl0236.46022MR254569
- [3] Asplund ( E.) and Rockafellar ( R.T.). - Gradients of convex fonctions, Trans. Amer. math. Soc., t. 139, 1969, p. 433-467. Zbl0181.41901MR240621
- [4] Asplund ( E. ) and Namioka ( I.). - A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. math. Soc., t. 73, 1967, p. 443-445. Zbl0177.40404MR209904
- [5] Bourgain ( J.). - Strongly exposed points in weakly compact convex sets in Banach spaces, Proc. Amer. math. Soc., t. 58, 1976, p. 197-200. Zbl0309.46009MR415272
- [6] Choquet ( G.). - Lectures on analysis, Vol. I-III. - New York, W. A. Benjamin, 1969.
- [7] Collier ( J.B.). - A class of strong differentiability spaces, Proc. Amer. math. Soc., t. 53, 1975, p. 420-422. Zbl0344.46042MR388044
- [8] Collier ( J.B.). - The dual of a space with the Radon-Nikodym property, Pacific. J. Math., t. 64, 1976, p. 103-106. Zbl0357.46028MR425580
- [9] Collier ( J.B.) and Edelstein ( M.). - On strongly exposed points and Fréchet differentiability ( à paraître). Zbl0281.46016
- [10] Diestel ( J.). - Geometry of Banach spaces. - Berlin, Heidelberg, New York, Springer-Verlag, 1975 (Lecture Notes in Mathematics, 485). Zbl0307.46009MR461094
- [11] Ekeland ( I.) and Lebourg ( G.). - Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. math. Soc., t. 224, 1976, p. 193-216. Zbl0313.46017MR431253
- [12] Huff ( R.E.) and Morris ( P.D.). - Dual spaces with the Krein-Milman property have the Radon-Nikodym property, Proc. Amer. math. Soc., t. 49, 1975, p. 104-108. Zbl0273.46034MR361775
- [13] Huff ( R.E.) and Morris ( P.D.). - Geometric characterizations of the R. N. property in Banach spaces, Studia. Math., Warszawa, t. 56, 1976, p. 157-164. Zbl0351.46011MR412776
- [14] Lindenstrauss ( J.). - Weakly compact sets, Their topological proporties and the Banach spaces they generate, "Symposium on infinite dimensional topology", p. 235-273. - Princeton, Princeton University Press, 1972 (Annals of Mathematics Studies, 69). Zbl0232.46019MR417761
- [15] Lindenstrauss ( J.). - On operators which attain their norm, Israel J. Math., t. 1, 1963, p. 139-148. Zbl0127.06704MR160094
- [16] Maynard ( H.B.). - A geometric characterization of Banach spaces having the R. N. P., Trans. Amer. math. Soc., t. 185, 1973, p. 495-500. Zbl0278.46040MR385521
- [17] Namioka ( I.). - Separate continuity and joint continuity, Pacific J. Math., t. 51, 1974, p. 513-531. Zbl0294.54010MR370466
- [18] Namoika ( I.). - Neighborhoods of extreme point, Israel J. Math., t. 5, 1967, p. 145-152. Zbl0177.40501
- [19] Namioka ( I.) and Phelps ( R.R.). - Banach spaces which are Asplund spaces, Duke math. Journal, t. 42, 1975, p. 735-750. Zbl0332.46013MR390721
- [20] Phelps ( R.R.). - Dentability and extreme points in Banach spaces, J. funct. Analysis, t. 17, 1974, p. 78-90. Zbl0287.46026MR352941
- [21] Phelps ( R.R.). - Histoire d'un théorème de Bessaga et Pelczynski, Séminaire Choquet : Initiation à l'analyse, 9e année, 1969/1970, n° 16, 7 p. Zbl0212.14204
- [22] Peck ( N.T.). - Support points in locally convex spaces, Duke math. J., t. 38, 1971, p. 271-278. Zbl0213.39103MR282191
- [23] Saab ( E.). - Dentabilité et points extrémaux dans les e. l. c. s., Séminaire Choquet : Initiation à l' analyse, 13e année, 1973/74, n° 13, 9 p. Zbl0332.46029
- [24] Saab ( E.). - Points extrémaux et propriété de Radon-nikodym dans les espaces de Fréchet dentables, Séminaire Choquet : Initiation à l'analyse, 13e année, 1973/74, n° 13, 9 p. Zbl0332.46030
- [25] Saab ( E.). - Dentabilité, points extrémaux et propriété de Radon-Nikodym, Bull. Sc. math., 2e série, t. 99, 1975, p. 129-134. Zbl0325.46036MR435796
- [26] Schaefer ( H.H.). - Topological vector spaces. - New York, Heidelberg, Berlin, Springer-Verlag, 1970. Zbl0217.16002MR342978
- [27] Stegall ( C.). - The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. math. Soc., t. 206, 1975, p. 213-223. Zbl0318.46056MR374381
- [28] Troyanski ( S.L.). - On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math., Warszawa, t. 37, 1971, p. 173-180. Zbl0214.12701MR306873
- [29] Uhl ( J.J., Jr). - A note on the Radon-Nikodym property for Banach spaces, Rev. roum. Math. pures et appl., t. 17, 1972, p. 113-115. Zbl0243.28013MR482100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.