Espaces localement convexes séparés différentiables

Skender Gjinushi

Séminaire Choquet. Initiation à l'analyse (1976-1977)

  • Volume: 16, page 1-14

How to cite

top

Gjinushi, Skender. "Espaces localement convexes séparés différentiables." Séminaire Choquet. Initiation à l'analyse 16 (1976-1977): 1-14. <http://eudml.org/doc/110551>.

@article{Gjinushi1976-1977,
author = {Gjinushi, Skender},
journal = {Séminaire Choquet. Initiation à l'analyse},
keywords = {W*-Strongly Exposed Point; Topological Dual; Convex Function; Strong Topology; W*-Compact Convex Equicontinuous Subset; W*-Dentable; Frechet Space; Quasimetrisable Dual},
language = {fre},
pages = {1-14},
publisher = {Secrétariat mathématique},
title = {Espaces localement convexes séparés différentiables},
url = {http://eudml.org/doc/110551},
volume = {16},
year = {1976-1977},
}

TY - JOUR
AU - Gjinushi, Skender
TI - Espaces localement convexes séparés différentiables
JO - Séminaire Choquet. Initiation à l'analyse
PY - 1976-1977
PB - Secrétariat mathématique
VL - 16
SP - 1
EP - 14
LA - fre
KW - W*-Strongly Exposed Point; Topological Dual; Convex Function; Strong Topology; W*-Compact Convex Equicontinuous Subset; W*-Dentable; Frechet Space; Quasimetrisable Dual
UR - http://eudml.org/doc/110551
ER -

References

top
  1. [1] Asplund ( E.). - Fréchet differentiability of convex fonctions, Acta Math., t. 121, 1968, p. 31-47. Zbl0162.17501MR231199
  2. [2] Asplund ( E.). - Boundedly Krein-compact spaces, "Proceedings of functional analysis week [1969. Aarhus]", p, 1-4. - Aarhus, Matematik Inst., Aarhus Univ., 1969. Zbl0236.46022MR254569
  3. [3] Asplund ( E.) and Rockafellar ( R.T.). - Gradients of convex fonctions, Trans. Amer. math. Soc., t. 139, 1969, p. 433-467. Zbl0181.41901MR240621
  4. [4] Asplund ( E. ) and Namioka ( I.). - A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. math. Soc., t. 73, 1967, p. 443-445. Zbl0177.40404MR209904
  5. [5] Bourgain ( J.). - Strongly exposed points in weakly compact convex sets in Banach spaces, Proc. Amer. math. Soc., t. 58, 1976, p. 197-200. Zbl0309.46009MR415272
  6. [6] Choquet ( G.). - Lectures on analysis, Vol. I-III. - New York, W. A. Benjamin, 1969. 
  7. [7] Collier ( J.B.). - A class of strong differentiability spaces, Proc. Amer. math. Soc., t. 53, 1975, p. 420-422. Zbl0344.46042MR388044
  8. [8] Collier ( J.B.). - The dual of a space with the Radon-Nikodym property, Pacific. J. Math., t. 64, 1976, p. 103-106. Zbl0357.46028MR425580
  9. [9] Collier ( J.B.) and Edelstein ( M.). - On strongly exposed points and Fréchet differentiability ( à paraître). Zbl0281.46016
  10. [10] Diestel ( J.). - Geometry of Banach spaces. - Berlin, Heidelberg, New York, Springer-Verlag, 1975 (Lecture Notes in Mathematics, 485). Zbl0307.46009MR461094
  11. [11] Ekeland ( I.) and Lebourg ( G.). - Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. math. Soc., t. 224, 1976, p. 193-216. Zbl0313.46017MR431253
  12. [12] Huff ( R.E.) and Morris ( P.D.). - Dual spaces with the Krein-Milman property have the Radon-Nikodym property, Proc. Amer. math. Soc., t. 49, 1975, p. 104-108. Zbl0273.46034MR361775
  13. [13] Huff ( R.E.) and Morris ( P.D.). - Geometric characterizations of the R. N. property in Banach spaces, Studia. Math., Warszawa, t. 56, 1976, p. 157-164. Zbl0351.46011MR412776
  14. [14] Lindenstrauss ( J.). - Weakly compact sets, Their topological proporties and the Banach spaces they generate, "Symposium on infinite dimensional topology", p. 235-273. - Princeton, Princeton University Press, 1972 (Annals of Mathematics Studies, 69). Zbl0232.46019MR417761
  15. [15] Lindenstrauss ( J.). - On operators which attain their norm, Israel J. Math., t. 1, 1963, p. 139-148. Zbl0127.06704MR160094
  16. [16] Maynard ( H.B.). - A geometric characterization of Banach spaces having the R. N. P., Trans. Amer. math. Soc., t. 185, 1973, p. 495-500. Zbl0278.46040MR385521
  17. [17] Namioka ( I.). - Separate continuity and joint continuity, Pacific J. Math., t. 51, 1974, p. 513-531. Zbl0294.54010MR370466
  18. [18] Namoika ( I.). - Neighborhoods of extreme point, Israel J. Math., t. 5, 1967, p. 145-152. Zbl0177.40501
  19. [19] Namioka ( I.) and Phelps ( R.R.). - Banach spaces which are Asplund spaces, Duke math. Journal, t. 42, 1975, p. 735-750. Zbl0332.46013MR390721
  20. [20] Phelps ( R.R.). - Dentability and extreme points in Banach spaces, J. funct. Analysis, t. 17, 1974, p. 78-90. Zbl0287.46026MR352941
  21. [21] Phelps ( R.R.). - Histoire d'un théorème de Bessaga et Pelczynski, Séminaire Choquet : Initiation à l'analyse, 9e année, 1969/1970, n° 16, 7 p. Zbl0212.14204
  22. [22] Peck ( N.T.). - Support points in locally convex spaces, Duke math. J., t. 38, 1971, p. 271-278. Zbl0213.39103MR282191
  23. [23] Saab ( E.). - Dentabilité et points extrémaux dans les e. l. c. s., Séminaire Choquet : Initiation à l' analyse, 13e année, 1973/74, n° 13, 9 p. Zbl0332.46029
  24. [24] Saab ( E.). - Points extrémaux et propriété de Radon-nikodym dans les espaces de Fréchet dentables, Séminaire Choquet : Initiation à l'analyse, 13e année, 1973/74, n° 13, 9 p. Zbl0332.46030
  25. [25] Saab ( E.). - Dentabilité, points extrémaux et propriété de Radon-Nikodym, Bull. Sc. math., 2e série, t. 99, 1975, p. 129-134. Zbl0325.46036MR435796
  26. [26] Schaefer ( H.H.). - Topological vector spaces. - New York, Heidelberg, Berlin, Springer-Verlag, 1970. Zbl0217.16002MR342978
  27. [27] Stegall ( C.). - The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. math. Soc., t. 206, 1975, p. 213-223. Zbl0318.46056MR374381
  28. [28] Troyanski ( S.L.). - On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math., Warszawa, t. 37, 1971, p. 173-180. Zbl0214.12701MR306873
  29. [29] Uhl ( J.J., Jr). - A note on the Radon-Nikodym property for Banach spaces, Rev. roum. Math. pures et appl., t. 17, 1972, p. 113-115. Zbl0243.28013MR482100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.