Tourbillons d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes

Thierry Gallay[1]

  • [1] Institut Fourier, Université de Grenoble I, BP 74, F-38402 Saint-Martin d’Hères

Séminaire Équations aux dérivées partielles (2001-2002)

  • page 1-16

How to cite

top

Gallay, Thierry. "Tourbillons d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes." Séminaire Équations aux dérivées partielles (2001-2002): 1-16. <http://eudml.org/doc/11047>.

@article{Gallay2001-2002,
affiliation = {Institut Fourier, Université de Grenoble I, BP 74, F-38402 Saint-Martin d’Hères},
author = {Gallay, Thierry},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Tourbillons d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes},
url = {http://eudml.org/doc/11047},
year = {2001-2002},
}

TY - JOUR
AU - Gallay, Thierry
TI - Tourbillons d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/11047
ER -

References

top
  1. H. Beirão da Veiga. Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J., 36(1) :149–166, 1987. Zbl0601.35093MR876996
  2. M. Ben-Artzi. Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal., 128(4) :329–358, 1994. Zbl0837.35110MR1308857
  3. L. Brandolese. Localisation, oscillations et comportement asymptotique pour les équations de Navier-Stokes. Thèse de l’E.N.S. Cachan, 2001. 
  4. L. Brandolese. On the localization of symmetric and asymmetric solutions of the Navier-Stokes equations in n . C. R. Acad. Sci. Paris Sér. I Math., 332(2) :125–130, 2001. Zbl0973.35149MR1813769
  5. Marco Cannone. Ondelettes, paraproduits et Navier-Stokes. Diderot Editeur, Paris, 1995. Zbl1049.35517MR1688096
  6. I. Gallagher, D. Iftimie, and F. Planchon. Asymptotics and stability for global solutions to the Navier-Stokes equations. Preprint, 2002. Zbl0997.35051MR1968202
  7. Th. Gallay and C.E. Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on 2 . To appear in Arch. Rat. Mech. Anal., 2002. Zbl1042.37058MR1912106
  8. Th. Gallay and C.E. Wayne. Long-time asymptotics of the Navier-Stokes and vorticity equations on 3 . To appear in the Phil. Trans. Roy. Soc. London, 2002. Zbl1048.35055MR1949968
  9. Th. Gallay and C.E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. In preparation. Zbl1139.35084
  10. Y. Giga, T. Miyakawa, and H. Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal., 104(3) :223–250, 1988. Zbl0666.76052MR1017289
  11. R. Kajikiya and T. Miyakawa. On L 2 decay of weak solutions of the Navier-Stokes equations in n . Math. Z., 192(1) :135–148, 1986. Zbl0607.35072MR835398
  12. T. Kato. Strong L p -solutions of the Navier-Stokes equation in m , with applications to weak solutions. Math. Z., 187(4) :471–480, 1984. Zbl0545.35073MR760047
  13. T. Kato. The Navier-Stokes equation for an incompressible fluid in 2 with a measure as the initial vorticity. Differential Integral Equations, 7(3-4) :949–966, 1994. Zbl0826.35094MR1270113
  14. J. Leray. Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Mathematica, 63 :193–248, 1934. 
  15. K. Masuda. Weak solutions of Navier-Stokes equations. Tohoku Math. J. (2), 36(4) :623–646, 1984. Zbl0568.35077MR767409
  16. T. Miyakawa and M. Schonbek. On optimal decay rates for weak solutions to the Navier-Stokes equations in n . In Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), volume 126, pages 443–455, 2001. Zbl0981.35048MR1844282
  17. A. Prochazka and D. Pullin. On the two-dimensional stability of the axisymmetric burgers vortex. Phys. Fluids, 7 :1788–1790, 1995. Zbl1023.76546MR1336103
  18. M. Schonbek. L 2 decay for weak solutions of the Navier- Stokes equations. Arch. Rational Mech. Anal., 88(3) :209–222, 1985. Zbl0602.76031MR775190
  19. M. Schonbek. Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Amer. Math. Soc., 4(3) :423–449, 1991. Zbl0739.35070MR1103459
  20. M. Schonbek. On decay of solutions to the Navier-Stokes equations. In Applied nonlinear analysis, pages 505–512. Kluwer/Plenum, New York, 1999. Zbl0954.35131MR1727469
  21. M. Wiegner. Decay results for weak solutions of the Navier-Stokes equations on n . J. Lond. Math. Soc., II. Ser., 35 :303–313, 1987. Zbl0652.35095MR881519

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.