Equations de Navier-Stokes dans le plan avec tourbillon initial mesure
- [1] Institut Fourier, Université de Grenoble I, BP 74, F-38402 Saint-Martin d’Hères
Séminaire Équations aux dérivées partielles (2003-2004)
- page 1-14
Access Full Article
topHow to cite
topGallay, Thierry. "Equations de Navier-Stokes dans le plan avec tourbillon initial mesure." Séminaire Équations aux dérivées partielles (2003-2004): 1-14. <http://eudml.org/doc/11080>.
@article{Gallay2003-2004,
affiliation = {Institut Fourier, Université de Grenoble I, BP 74, F-38402 Saint-Martin d’Hères},
author = {Gallay, Thierry},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Equations de Navier-Stokes dans le plan avec tourbillon initial mesure},
url = {http://eudml.org/doc/11080},
year = {2003-2004},
}
TY - JOUR
AU - Gallay, Thierry
TI - Equations de Navier-Stokes dans le plan avec tourbillon initial mesure
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
LA - fre
UR - http://eudml.org/doc/11080
ER -
References
top- M. Ben-Artzi. Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal.128, 329–358, 1994. Zbl0837.35110MR1308857
- H. Brezis. Remarks on the preceding paper by M. Ben-Artzi : “Global solutions of two-dimensional Navier-Stokes and Euler equations”. Arch. Rational Mech. Anal., 128, 359–360, 1994. Zbl0837.35112
- M. Cannone et F. Planchon. Self-similar solutions for Navier-Stokes equations in . Commun. Partial Differ. Equations, 21, 179–193, 1996. Zbl0842.35075MR1373769
- E. A. Carlen et M. Loss. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the -D Navier-Stokes equation. Duke Math. J., 81, 135–157 (1996), 1995. Zbl0859.35011MR1381974
- A. Carpio. Asymptotic behavior for the vorticity equations in dimensions two and three. Comm. Partial Differential Equations, 19, 827–872, 1994. Zbl0816.35108MR1274542
- G.-H. Cottet. Équations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math., 303, 105–108, 1986. Zbl0606.35065MR853597
- I. Gallagher et Th. Gallay. Uniqueness of the solutions of the Navier-Stokes equation in with measure-valued initial vorticity. Article en préparation, 2004.
- Th. Gallay et C. E. Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on . Arch. Ration. Mech. Anal., 163, 209–258, 2002. Zbl1042.37058MR1912106
- Th. Gallay et C. E. Wayne. Long-time asymptotics of the Navier-Stokes and vorticity equations on . R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360, 2155–2188, 2002. Recent developments in the mathematical theory of water waves (Oberwolfach, 2001). Zbl1048.35055MR1949968
- Th. Gallay. Tourbillon d’Oseen et comportement asymptotique des solutions de l’équation de Navier-Stokes. Séminaire EDP de l’Ecole Polytechnique 2001-2002, exposé V.
- Th. Gallay et C.E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Prépublication de l’Institut Fourier (2003), disponible sur http://arXiv.org/abs/math/0402449. Zbl1139.35084
- M.-H. Giga et Y. Giga. Nonlinear partial differential equations : asymptotic behaviour of solutions and self-similar solutions. Ouvrage publié en japonais en 1999, traduction anglaise en préparation, 2004.
- Y. Giga et T. Kambe. Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Comm. Math. Phys., 117, 549–568, 1988. Zbl0661.76018MR953819
- Y. Giga, T. Miyakawa, et H. Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal., 104, 223–250, 1988. Zbl0666.76052MR1017289
- S. Kamin (Kamenomostskaya). The asymptotic behavior of the solution of the filtration equation. Israel J. Math., 14, 76–87, 1973. Zbl0254.35054MR315292
- T. Kato. The Navier-Stokes equation for an incompressible fluid in with a measure as the initial vorticity. Differential Integral Equations, 7, 949–966, 1994. Zbl0826.35094MR1270113
- J. Leray. Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures. Appl., 12, 1–82, 1933. Zbl0006.16702
- H. Osada. Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ., 27, 597–619, 1987. Zbl0657.35073MR916761
- A. Prochazka et D. I. Pullin. On the two-dimensional stability of the axisymmetric Burgers vortex. Phys. Fluids, 7, 1788–1790, 1995. Zbl1023.76546MR1336103
- L. Rossi et J. Graham-Eagle. On the existence of two-dimensional, localized, rotating, self-similar vortical structures. SIAM J. Appl. Math., 62, 2114–2128, 2002. Zbl1010.35083MR1918309
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.