New Results in Velocity Averaging
- [1] Institut Universitaire de France & Ecole Normale Supéri- eure Département de Mathématiques et Applications 45 rue d’Ulm 75005 Paris, France
Séminaire Équations aux dérivées partielles (2001-2002)
- Volume: 2001-2002, page 1-15
Access Full Article
topAbstract
topHow to cite
topGolse, François. "New Results in Velocity Averaging." Séminaire Équations aux dérivées partielles 2001-2002 (2001-2002): 1-15. <http://eudml.org/doc/11051>.
@article{Golse2001-2002,
abstract = {This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for $L^1$ functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.},
affiliation = {Institut Universitaire de France & Ecole Normale Supéri- eure Département de Mathématiques et Applications 45 rue d’Ulm 75005 Paris, France},
author = {Golse, François},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {New Results in Velocity Averaging},
url = {http://eudml.org/doc/11051},
volume = {2001-2002},
year = {2001-2002},
}
TY - JOUR
AU - Golse, François
TI - New Results in Velocity Averaging
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2001-2002
SP - 1
EP - 15
AB - This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for $L^1$ functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.
LA - eng
UR - http://eudml.org/doc/11051
ER -
References
top- C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 101–118. Zbl0593.35076MR794002
- C. Bardos, F. Golse, C.D. Levermore, Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation, Commun. Pure & Appl. Math 46 (1993), 667–753. Zbl0817.76002MR1213991
- F. Bouchut, L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Royal Soc. Edinburgh 129A (1999), 19–36. Zbl0933.35159MR1669221
- F. Bouchut, F. Golse, C. Pallard, Nonresonant smoothing for wave+transport systems and the Vlasov-Maxwell system, to appear in the proceedings of the IMA, Springer-Verlag. Zbl1064.35097MR2045231
- F. Bouchut, F. Golse, C. Pallard, Nonresonant velocity averaging for wave+transport systems, in preparation. Zbl1064.35097
- F. Bouchut, F. Golse, C. Pallard, Conditional regularity of solutions to the 3D Vlasov-Maxwell system, in preparation. Zbl1044.76075
- F. Bouchut, F. Golse, M. Pulvirenti, Kinetic Equations and Asymptotic Theory, B. Perthame and L. Desvillettes eds., Series in Applied Mathematics 4, Gauthier-Villars, Paris, 2000. Zbl0979.82048MR2065070
- F. Castella, B. Perthame, Estimations de Strichartz pour les équations de transport, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 535–540. Zbl0848.35095MR1383431
- R. DeVore, G. Petrova, The averaging lemma, J. Amer. Math. Soc. 14 (2001), 279–296. Zbl1001.35079MR1815213
- R. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729–757. Zbl0698.35128MR1003433
- R.J. DiPerna and P.-L. Lions, On the Cauchy Problem for the Boltzmann Equation: Global Existence and Weak Stability Results, Annals of Math. 130 (1990), 321–366. Zbl0698.45010MR1014927
- R. DiPerna, P.-L. Lions, Y. Meyer, regularity of velocity averages Ann. Inst. H. Poincaré Anal. Non Lin. 8 (1991), 271–288. Zbl0763.35014MR1127927
- N. Dunford, J. T. Schwartz Linear operators, part I, Interscience Publishers Inc., New York 1958. Zbl0084.10402MR117523
- P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16, (1991), 1761–1794. Zbl0770.35001MR1135919
- P. Gérard, F. Golse, Averaging regularity results for PDEs under transversality assumptions Comm. Pure Appl. Math. 45 (1992), 1–26. Zbl0832.35020MR1135922
- R. Glassey, W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), 59–90. Zbl0595.35072MR816621
- R. Glassey, W. Strauss, High Velocity Particles in a Collisionless Plasma, Math. Meth. Appl. Sci. 9 (1987), 46–52. Zbl0649.35079MR881551
- R. Glassey, W. Strauss, Absence of Schocks in an Initially Dilute Collisionless Plasma, Comm. Math. Phys. 113 (1987), 191–208. Zbl0646.35072MR919231
- F. Golse Quelques résultats de moyennisation pour les équations aux dérivées partielles in Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino 1988, Special Issue, 101–123 (1989). Zbl0679.35017MR1007370
- F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the Moments of the Solution of a Transport Equation, J. Funct. Anal. 76 (1988), 110–125. Zbl0652.47031MR923047
- F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale de l’opérateur de transport, C.R. Acad. Sci. Paris série I 301 (1985), 341–344. Zbl0591.45007
- F. Golse, L. Saint-Raymond, Velocity averaging in for the transport equation C.R. Acad. Sci. Paris, Sér. I 334 (2002), 557–562. Zbl1154.35326MR1903763
- F. Golse, L. Saint-Raymond, The Navier-Stokes limit for the Boltzmann equation: convergence proof, preprint; & C.R. Acad. Sci. Paris série I 333 (2001), 897–902. Zbl1056.35134MR1873232
- D. Hilbert, Begründung der kinetischen Gastheorie, Math. Annalen 72 (1912), 562–578. Zbl43.1055.03MR1511713
- S. Klainerman, G. Staffilani, A new approach to the Maxwell Vlasov equations, preprint. Zbl1037.35088
- L. Landau, E. Lifshitz, Cours de physique théorique. Vol. 2: Théorie des champs, Editions Mir, Moscou, 1970.
- J.-L. Lions, Théorèmes de trace et d’interpolation I, II, Ann. Scuola Norm. di Pisa 13 (1959), pp. 389–403, 14 (1960), pp. 317–331. Zbl0097.09502
- P.-L. Lions Régularité optimale des moyennes en vitesse, C. R. Acad. Sci. Paris Série I 320 (1995), 911–915 & C. R. Acad. Sci. Paris Série I 326 (1998), 945–948. Zbl0827.35110MR1328710
- P.-A. Meyer; Probabilités et potentiel, Hermann, Paris 1966. Zbl0138.10402MR205287
- P.-L. Lions, T. Paul Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9, (1993), 553–618. Zbl0801.35117MR1251718
- B. Perthame, Global Existence to the BGK Model of the Boltzmann Equation, J. Diff. Eq. 82 (1989), 191–205. Zbl0694.35134MR1023307
- B. Perthame, P. Souganidis, A limiting case for velocity averaging, Ann. Scient. Ecole Normale Sup. 4ème série 31, (1998), 591–598. Zbl0956.45010MR1634024
- K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations 95 (1992), 281–303. Zbl0810.35089MR1165424
- L. Saint-Raymond, Discrete time Navier-Stokes limit for the BGK Boltzmann equation, Comm. Partial Differential Equations 27 (2002), 149–185. Zbl1009.35071MR1886958
- C. Villani, Limites hydrodynamiques de l’équation de Boltzmann [d’après C. Bardos, F. Golse, D. Levermore, P.-L. Lions, N. Masmoudi, L. Saint-Raymond], Séminaire Bourbaki, vol. 2000-2001, Exp. 893.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.