New Results in Velocity Averaging

François Golse[1]

  • [1] Institut Universitaire de France & Ecole Normale Supéri- eure Département de Mathématiques et Applications 45 rue d’Ulm 75005 Paris, France

Séminaire Équations aux dérivées partielles (2001-2002)

  • Volume: 2001-2002, page 1-15

Abstract

top
This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for L 1 functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.

How to cite

top

Golse, François. "New Results in Velocity Averaging." Séminaire Équations aux dérivées partielles 2001-2002 (2001-2002): 1-15. <http://eudml.org/doc/11051>.

@article{Golse2001-2002,
abstract = {This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for $L^1$ functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.},
affiliation = {Institut Universitaire de France & Ecole Normale Supéri- eure Département de Mathématiques et Applications 45 rue d’Ulm 75005 Paris, France},
author = {Golse, François},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {New Results in Velocity Averaging},
url = {http://eudml.org/doc/11051},
volume = {2001-2002},
year = {2001-2002},
}

TY - JOUR
AU - Golse, François
TI - New Results in Velocity Averaging
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2001-2002
SP - 1
EP - 15
AB - This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for $L^1$ functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.
LA - eng
UR - http://eudml.org/doc/11051
ER -

References

top
  1. C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 101–118. Zbl0593.35076MR794002
  2. C. Bardos, F. Golse, C.D. Levermore, Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation, Commun. Pure & Appl. Math 46 (1993), 667–753. Zbl0817.76002MR1213991
  3. F. Bouchut, L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Royal Soc. Edinburgh 129A (1999), 19–36. Zbl0933.35159MR1669221
  4. F. Bouchut, F. Golse, C. Pallard, Nonresonant smoothing for wave+transport systems and the Vlasov-Maxwell system, to appear in the proceedings of the IMA, Springer-Verlag. Zbl1064.35097MR2045231
  5. F. Bouchut, F. Golse, C. Pallard, Nonresonant velocity averaging for wave+transport systems, in preparation. Zbl1064.35097
  6. F. Bouchut, F. Golse, C. Pallard, Conditional regularity of solutions to the 3D Vlasov-Maxwell system, in preparation. Zbl1044.76075
  7. F. Bouchut, F. Golse, M. Pulvirenti, Kinetic Equations and Asymptotic Theory, B. Perthame and L. Desvillettes eds., Series in Applied Mathematics 4, Gauthier-Villars, Paris, 2000. Zbl0979.82048MR2065070
  8. F. Castella, B. Perthame, Estimations de Strichartz pour les équations de transport, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 535–540. Zbl0848.35095MR1383431
  9. R. DeVore, G. Petrova, The averaging lemma, J. Amer. Math. Soc. 14 (2001), 279–296. Zbl1001.35079MR1815213
  10. R. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729–757. Zbl0698.35128MR1003433
  11. R.J. DiPerna and P.-L. Lions, On the Cauchy Problem for the Boltzmann Equation: Global Existence and Weak Stability Results, Annals of Math. 130 (1990), 321–366. Zbl0698.45010MR1014927
  12. R. DiPerna, P.-L. Lions, Y. Meyer, L p regularity of velocity averages Ann. Inst. H. Poincaré Anal. Non Lin. 8 (1991), 271–288. Zbl0763.35014MR1127927
  13. N. Dunford, J. T. Schwartz Linear operators, part I, Interscience Publishers Inc., New York 1958. Zbl0084.10402MR117523
  14. P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16, (1991), 1761–1794. Zbl0770.35001MR1135919
  15. P. Gérard, F. Golse, Averaging regularity results for PDEs under transversality assumptions Comm. Pure Appl. Math. 45 (1992), 1–26. Zbl0832.35020MR1135922
  16. R. Glassey, W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), 59–90. Zbl0595.35072MR816621
  17. R. Glassey, W. Strauss, High Velocity Particles in a Collisionless Plasma, Math. Meth. Appl. Sci. 9 (1987), 46–52. Zbl0649.35079MR881551
  18. R. Glassey, W. Strauss, Absence of Schocks in an Initially Dilute Collisionless Plasma, Comm. Math. Phys. 113 (1987), 191–208. Zbl0646.35072MR919231
  19. F. Golse Quelques résultats de moyennisation pour les équations aux dérivées partielles in Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino 1988, Special Issue, 101–123 (1989). Zbl0679.35017MR1007370
  20. F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the Moments of the Solution of a Transport Equation, J. Funct. Anal. 76 (1988), 110–125. Zbl0652.47031MR923047
  21. F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale de l’opérateur de transport, C.R. Acad. Sci. Paris série I 301 (1985), 341–344. Zbl0591.45007
  22. F. Golse, L. Saint-Raymond, Velocity averaging in L 1 for the transport equation C.R. Acad. Sci. Paris, Sér. I 334 (2002), 557–562. Zbl1154.35326MR1903763
  23. F. Golse, L. Saint-Raymond, The Navier-Stokes limit for the Boltzmann equation: convergence proof, preprint; & C.R. Acad. Sci. Paris série I 333 (2001), 897–902. Zbl1056.35134MR1873232
  24. D. Hilbert, Begründung der kinetischen Gastheorie, Math. Annalen 72 (1912), 562–578. Zbl43.1055.03MR1511713
  25. S. Klainerman, G. Staffilani, A new approach to the Maxwell Vlasov equations, preprint. Zbl1037.35088
  26. L. Landau, E. Lifshitz, Cours de physique théorique. Vol. 2: Théorie des champs, Editions Mir, Moscou, 1970. 
  27. J.-L. Lions, Théorèmes de trace et d’interpolation I, II, Ann. Scuola Norm. di Pisa 13 (1959), pp. 389–403, 14 (1960), pp. 317–331. Zbl0097.09502
  28. P.-L. Lions Régularité optimale des moyennes en vitesse, C. R. Acad. Sci. Paris Série I 320 (1995), 911–915 & C. R. Acad. Sci. Paris Série I 326 (1998), 945–948. Zbl0827.35110MR1328710
  29. P.-A. Meyer; Probabilités et potentiel, Hermann, Paris 1966. Zbl0138.10402MR205287
  30. P.-L. Lions, T. Paul Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9, (1993), 553–618. Zbl0801.35117MR1251718
  31. B. Perthame, Global Existence to the BGK Model of the Boltzmann Equation, J. Diff. Eq. 82 (1989), 191–205. Zbl0694.35134MR1023307
  32. B. Perthame, P. Souganidis, A limiting case for velocity averaging, Ann. Scient. Ecole Normale Sup. 4ème série 31, (1998), 591–598. Zbl0956.45010MR1634024
  33. K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations 95 (1992), 281–303. Zbl0810.35089MR1165424
  34. L. Saint-Raymond, Discrete time Navier-Stokes limit for the BGK Boltzmann equation, Comm. Partial Differential Equations 27 (2002), 149–185. Zbl1009.35071MR1886958
  35. C. Villani, Limites hydrodynamiques de l’équation de Boltzmann [d’après C. Bardos, F. Golse, D. Levermore, P.-L. Lions, N. Masmoudi, L. Saint-Raymond], Séminaire Bourbaki, vol. 2000-2001, Exp. 893. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.