Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data

C. Bardos; P. Degond

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 2, page 101-118
  • ISSN: 0294-1449

How to cite

top

Bardos, C., and Degond, P.. "Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data." Annales de l'I.H.P. Analyse non linéaire 2.2 (1985): 101-118. <http://eudml.org/doc/78090>.

@article{Bardos1985,
author = {Bardos, C., Degond, P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Vlasov-Poisson equation; Hamiltonian system; estimates; electric field; Poisson equation},
language = {eng},
number = {2},
pages = {101-118},
publisher = {Gauthier-Villars},
title = {Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data},
url = {http://eudml.org/doc/78090},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Bardos, C.
AU - Degond, P.
TI - Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 2
SP - 101
EP - 118
LA - eng
KW - Vlasov-Poisson equation; Hamiltonian system; estimates; electric field; Poisson equation
UR - http://eudml.org/doc/78090
ER -

References

top
  1. [1] A.A. Arsenev, Global existence of a weak solution of Vlasov's system of equations. U. S. S. R. comput. Math. and Math. Phys., t. 15, 1975, p. 131-143. MR371322
  2. [2] S.V. Iordanskii, The Cauchy problem for the kinelic equation of plasma. Amer. Math. Soc. Trans. Ser.2—35, 1964, p. 351-363. Zbl0127.21902
  3. [3] S. Klainerman, Long time behaviour of the solution to non linear equations. Arch. Rat. Mech. Anal., t. 78, 1982, p. 73-98. Zbl0502.35015MR654553
  4. [4] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations. Comm. Pure and Appl. Math. t. 36, 1, 1983, p. 133-141. Zbl0509.35009MR680085
  5. [5] J. Shatah, Global existence of small solutions to non linear evolution equations. (To appear). Zbl0518.35046
  6. [6] S. Ukai and T. Okabe, On the classical solution in the large in time of the two dimensional Vlasov equation. Osaka J. of Math., n° 15, 1978, p. 245-261. Zbl0405.35002MR504289

Citations in EuDML Documents

top
  1. P. A. Raviart, Modèles fluides et modèles cinétiques en analyse numérique
  2. P. Degond, Régularité de la solution des équations cinétiques en physique des plasmas
  3. C. Bardos, Équations cinétiques et changement d'échelle
  4. Mohammad Asadzadeh, Streamline diffusion methods for the Vlasov-Poisson equation
  5. Pierre Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions
  6. Said Benachour, Analyticité des solutions des équations de Vlassov-Poisson
  7. Naoufel Ben Abdallah, Andreas Unterreiter, Stationary voltage current characteristics of a plasma
  8. M. Bezard, Problème aux limites pour le système de Vlasov-Maxwell
  9. Gerhard Rein, Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system
  10. Delphine Salort, Étude qualitative de l’équation de Liouville en géométries courbes.

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.