Quantum Dynamics and generalized fractal dimensions: an introduction

François Germinet[1]

  • [1] UMR 8524 CNRS, UFR de Mathématiques, Université de Lille 1, F-59655 Villeneuve d’Ascq Cédex, France

Séminaire Équations aux dérivées partielles (2002-2003)

  • Volume: 2002-2003, page 1-14

Abstract

top
We review some recent results on quantum motion analysis, and in particular lower bounds for moments in quantum dynamics. The goal of the present exposition is to stress the role played by quantities we shall call Transport Integrals and by the so called generalized dimensions of the spectral measure in the analysis of quantum motion. We start with very simple derivations that illustrate how these quantities naturally enter the game. Then, gradually, we present successive improvements, up to most recent result.

How to cite

top

Germinet, François. "Quantum Dynamics and generalized fractal dimensions: an introduction." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-14. <http://eudml.org/doc/11060>.

@article{Germinet2002-2003,
abstract = {We review some recent results on quantum motion analysis, and in particular lower bounds for moments in quantum dynamics. The goal of the present exposition is to stress the role played by quantities we shall call Transport Integrals and by the so called generalized dimensions of the spectral measure in the analysis of quantum motion. We start with very simple derivations that illustrate how these quantities naturally enter the game. Then, gradually, we present successive improvements, up to most recent result.},
affiliation = {UMR 8524 CNRS, UFR de Mathématiques, Université de Lille 1, F-59655 Villeneuve d’Ascq Cédex, France},
author = {Germinet, François},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quantum Dynamics and generalized fractal dimensions: an introduction},
url = {http://eudml.org/doc/11060},
volume = {2002-2003},
year = {2002-2003},
}

TY - JOUR
AU - Germinet, François
TI - Quantum Dynamics and generalized fractal dimensions: an introduction
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 14
AB - We review some recent results on quantum motion analysis, and in particular lower bounds for moments in quantum dynamics. The goal of the present exposition is to stress the role played by quantities we shall call Transport Integrals and by the so called generalized dimensions of the spectral measure in the analysis of quantum motion. We start with very simple derivations that illustrate how these quantities naturally enter the game. Then, gradually, we present successive improvements, up to most recent result.
LA - eng
UR - http://eudml.org/doc/11060
ER -

References

top
  1. J.-M. Barbaroux, J. M. Combes, R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal. Appl. 213 , 698-722 (1997) Zbl0893.47048MR1470878
  2. J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Duke Math. J. 110, 161-193 (2001). Zbl1012.81018MR1861091
  3. J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Quantum diffusion and generalized fractal dimensions: the L 2 ( d ) case, Actes des journées EDP de Nantes (2000). MR1775677
  4. J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions: equivalence and basic properties, J. Math. Pure et Appl. 80, 977-1012 (2001) Zbl1050.28006MR1876760
  5. J.-M. Barbaroux, S. Tcheremchantsev, Universal lower bounds for quantum diffusion, J. Funct. Anal. 168, 327-354 (1999). Zbl0961.81008MR1719245
  6. J. Bellissard, I. Guarneri, H. Schulz-Baldes, Phase-averaged transport for quasi-periodic Hamiltonians, Commun. Math. Phys. 227, 515-539 (2002). Zbl1014.82021MR1910829
  7. J.-M. Combes, Connection between quantum dynamics and spectral properties of time evolution operators, in “Differential Equations and Applications in Mathematical Physics", Eds. W.F. Ames, E.M. Harrel, J.V. Herod (Academic Press 1993), 59-69. Zbl0797.35136
  8. J.M. Combes, G. Mantica, Fractal Dimensions and Quantum Evolution Associated with Sparse Potential Jacobi Matrices, Long time behaviour of classical and quantum systems (Bologna, 1999), 107-123, Ser. Concr. Appl. Math., 1, World Sci. Publishing, River Edge, NJ, 2001. Zbl0979.81035MR1852219
  9. H. Cycon, R. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Springer-Verlag, 1987. Zbl0619.47005MR883643
  10. D. Damanik and S. Tcheremchantsev, Power-law bounds on transfer matrices and quantum dynamics in one dimension, Commun. Math. Phys. 236, 513-534 (2003). Zbl1033.81032MR2021200
  11. D. Damanik, A. Suto, S. Tcheremchantsev, Power-law Bounds on Transfer Matrices and Quantum Dynamics in One Dimension II, Preprint. Zbl1059.81055MR2095687
  12. S. De Bièvre, G. Forni, Transport properties of kicked and quasiperiodic Hamiltonians, J. Statist. Phys. 90, 1201-1223 (1998). Zbl0923.47042MR1628308
  13. R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69, 153-200 (1996). Zbl0908.47002MR1428099
  14. F. Germinet, A. Kiselev, S. Tcheremchantsev, Transfer matrices and transport for 1D Schrödinger operators with singular spectrum, Preprint. Zbl1074.81019
  15. F. Germinet, A. Klein, A characterization of the Anderson metal-insulator transport transition, Preprint. Zbl1062.82020MR2042531
  16. F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions on the negative axis for compactly supported measures, Preprint. Zbl1136.28003MR2213593
  17. I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10 (1989), 95-100; On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21, 729-733 (1993). 
  18. I. Guarneri and H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J. 5, paper 1, (1999). Zbl0910.47059MR1663518
  19. I. Guarneri and H. Schulz-Baldes, Intermittent lower bound on quantum diffusion, Lett. Math. Phys. 49 (1999), 317-324. Zbl1001.81019MR1749574
  20. M. Hermann, Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnod et de Moser sur le tore en dimension 2, Comment. Math. Helv. 58, 453-502 (1983). Zbl0554.58034
  21. S. Jitomirskaya, H. Schulz-Baldes, G. Stolz, Delocalization in random polymer models Commun. Math. Phys. 233, 27-48 (2003). Zbl1013.82027MR1957731
  22. A. Kiselev and Y. Last, Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains, Duke Math. J. 102, 125-150 (2000). Zbl0951.35033MR1741780
  23. A. Klein, A. Koines, M. Seifert, Generalized Eigenfunctions for Waves in Inhomogeneous Media, J. Funct. Anal 190, 255-291 (2002). Zbl1043.35097MR1895534
  24. Y. Last, Quantum dynamics and decomposition of singular continuous spectrum, J. Funct. Anal. 142, 406-445 (1996). Zbl0905.47059MR1423040
  25. G. Mantica, Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103, 576-589 (1997); Wave propagation in almost-periodic structures, Physica D 109, 113-127 (1997). Zbl0925.58041
  26. L. Olsen, A multifractal formalism, Adv. Math. 116, 82-195 (1995). Zbl0841.28012MR1361481
  27. Y. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Univ. Chicago Press, (1996). Zbl0895.58033MR1489237
  28. M. Reed, B. Simon, Methods of Modern Mathematical Physics III, Scattering theory, Academic London 1979. Zbl0405.47007MR529429
  29. A. Rényi, Probability Theory, Amsterdam (1970); Calcul des Probabilités, avec un appendice sur la théorie de l’information, Dunod 1966. Zbl0849.01047
  30. H. Schulz-Baldes, J. Bellissard, Anomalous transport: a mathematical framework, Rev. Math. Phys. 10, 1-46 (1998). Zbl0908.47066MR1606847
  31. B. Simon, Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. AMS 124 (1996), 3361-3369. Zbl0944.34064MR1350963
  32. R. Strichartz, Fourier asymptotics of fractal measures. J. Funct. Anal. 89, 154–187 (1990). Zbl0693.28005MR1040961
  33. F. Takens, E. Verbitski, Multifractal analysis of local entropies for expansive homeomorphisms with specification, Commun. Math. Phys. 203, 593-612 (1999). Zbl0955.37002MR1700158
  34. S. Tcheremchantsev, Mixed lower bounds in quantum transport, J. Funct. Anal. 197 (2003), 247-282. Zbl1060.47070MR1957683
  35. S. Tcheremchantsev, Dynamical analysis of Schrödinger operators with sparse potentials, in preparation. Zbl1100.47027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.