Problèmes non homogènes de la géométrie des nombres

Hassan Saffari

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1961-1962)

  • Volume: 3, page 1-18

How to cite

top

Saffari, Hassan. "Problèmes non homogènes de la géométrie des nombres." Séminaire Delange-Pisot-Poitou. Théorie des nombres 3 (1961-1962): 1-18. <http://eudml.org/doc/110605>.

@article{Saffari1961-1962,
author = {Saffari, Hassan},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
keywords = {number theory},
language = {fre},
pages = {1-18},
publisher = {Secrétariat mathématique},
title = {Problèmes non homogènes de la géométrie des nombres},
url = {http://eudml.org/doc/110605},
volume = {3},
year = {1961-1962},
}

TY - JOUR
AU - Saffari, Hassan
TI - Problèmes non homogènes de la géométrie des nombres
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1961-1962
PB - Secrétariat mathématique
VL - 3
SP - 1
EP - 18
LA - fre
KW - number theory
UR - http://eudml.org/doc/110605
ER -

References

top
  1. [1] Barnes ( E.S.). - Non-homogeneous binary quadratic forms, Quart. J. Math., Oxford, Series 2, t. 1, 1950, p. 199-210. Zbl0037.17103MR41887
  2. [2] Barnes ( E.S.). - The inhomogeneous minima of binary quadratic forms, IV., Acta Math., t. 92, 1954, p. 235-264. Zbl0056.27302MR67940
  3. [3] Barnes ( E.S.). - The inhomogeneous minimum of a ternary quadratic form, II., Acta Math., t. 96, 1956, p. 67-97. Zbl0070.27502MR91311
  4. [4] Barnes ( E.S.) and Swinnerton-Dyer ( H.P.F.). - The inhomogeneous minima of binary quadratic forms, I., Acta Math., t. 87, 1952, p. 259-323. Zbl0046.27601MR53162
  5. [5] Barnes ( E.S.) and Swinnerton-Dyer ( H.P.F.). - The inhomogeneous minima of binary quadratic forms, II., Acta Math., t. 88, 1952, p. 279-316. Zbl0047.28102MR54654
  6. [6] Barnes ( E.S.) and Swinnerton-Dyer ( H.P.F.). - The inhomogeneous minima of binary quadratic forms, III., Acta Math., t. 92, 1954, p. 199-234. Zbl0056.27301MR67939
  7. [7] Birch ( B.J.). - The inhomogeneous minimum of quadratic forms of signature zero, Acta Arithm., t. 4, 1958, p. 85-98. Zbl0080.03405MR98712
  8. [8] Birch ( B.J.) and Davenport ( H.). - Indefinite quadratic forms in many variables, Mathematika, t. 5, 1958, p. 8-12. Zbl0084.27201MR96621
  9. [9] Birch ( B.J.) and Swinnerton-Dyer ( H.P.F.). - On the inhomogeneous minimum of the product of n linear forms, Mathematika, t. 3, 1956, p. 25-39. Zbl0074.03702MR79049
  10. [10] Chabaut ( Claude). - Limite d'ensembles et géométrie des nombres, Bull. Soc. math. France, t. 78, 1950, p. 143-151. Zbl0039.04101MR38983
  11. [11] Cassels ( J.W.S.). - The product of n inhomogeneous linear forms in n variables, J. London math. Soc., t. 27, 1952, p. 485-492. Zbl0047.04902MR50632
  12. [12] Cassels ( J.W.S.). - The inhomogeneous minimum of binary quadratic ternary cubic and quaternary quartic forms, Proc. Cambridge phil. Soc., t. 48, 1952, p. 72-86 et 519-520. Zbl0046.04601MR47709
  13. [13] Cassels ( J.W.S.). - An introduction to diophantine approximation. - Cambridge, at the University Press, 1957 (Cambridge Tracts in Math. and math. Physics, 45). Zbl0077.04801MR87708
  14. [14] Cassels ( J.W.S.). - An introduction to the geometry of numbers. - Berlin,Gottingen, Heidelberg, Springer-Verlag, 1959 (Die Grundlehren der mathematischen Wissenchaften, 99). Zbl0086.26203MR157947
  15. Čebotarev ( N.). Voir TSCHEBOTAROW (N.). 
  16. [15] Chalk ( J.H.H.). - On the positive values of linear forms, I., Quart. J. Math., Oxford, t. 18, 1947, p. 215-227. Zbl0038.02703MR23858
  17. [16] Chalk ( J.H.H.). - On the positive values of linear forms, II., Quart. J. Math., Oxford, t. 19, 1948; p. 67-80. Zbl0038.02703MR25514
  18. [17] Davenport ( H.). - A simple proof of Remak's theorem on the product of three linear forms, J. London math. Soc., t. 14, 1939, p. 47-51. Zbl0020.20502
  19. [18] Davenport ( H.). - On a theorem of Tschebotareff, J. London math. Soc., t. 21, 1946, p. 28-34. Corringendum, J. London math. Soc., t. 24, 1949, p. 316. Zbl0060.12001MR19655
  20. [19] Davenport ( H.). - Non-homogeneous ternary quadratic forms, Acta Math., t. 80, 1948, p. 65-95. Zbl0030.29702MR26068
  21. [20] Davenport ( H.) and Ridout ( D.). - Indefinite quadratic forms, Proc. London math. Soc., Series 3, t. 9, 1959, p. 544-555. Zbl0091.04605MR109140
  22. [21] Davenport ( H.) and Swinnerton-Dyer ( H.P.F.). - Product of inhomogeneous linear forms, Froc. London math. Soc., Series 3, t. 5, 1955, p. 474-499. Zbl0065.03201MR75988
  23. [22] Dickson( Leonard E.). - Studies in the theory of numbers. - Chigago, the University of Chigago Press, 1930 (The University of Chigago Science Series). JFM56.0154.01
  24. [23] Lejeune Dirichlet ( G.). - G. Lejeune Dirichlet's Werke, 2ter Band. - Berlin, G. Heimer, 1897. 
  25. [24] Dyson ( F.J.). - A theorem in algebraic topology, Annals of Math., Series 2, t. 49, 1948, p. 75-81. Zbl0031.18201MR25724
  26. [25] Dyson ( F.J.). - On the product of four non-homogeneous linear forms, Annals of Math., Series 2, t. 49, 1948, p. 82-109. Zbl0031.15402MR25515
  27. [26] Hanoock ( Harris). - Development of the Minkowski geometry of numbers. - New-York, the Macmillan Company, 1939. Zbl0060.11206
  28. [27] Hardy ( G.H.) and Wright ( E.M.). - An introduction to the theory of numbers, 4th edition. - Oxford, the Clarendon Press, 1959. Zbl0086.25803MR67125
  29. [28] Hofreiter ( Nicolas). - Über einen Approximationssatz von Minkowski, Monatsh. für Math. und Physik, t. 40, 1933, p. 351-406. Zbl0008.19904
  30. [29] Koksma ( J.F.). - Diophantische Approximationen. - Berlin, J. Springer, 1936 (Ergebnisse der Mathematik, 4). Zbl0012.39602MR344200JFM62.0173.01
  31. [30] Landau ( Edmund). - Neuer Beweis eines Minkowskischen Satzes, J. reine und angew. Math., t. 165, 1931, p. 1-3. Zbl0002.01203
  32. Lejeune-Dirichlet ( G.). Voir DIRICHLET (G. LEJEUNE). 
  33. [31] Minkowski ( Hermann). - Annäherung einer reellen Grösse durch rationale Zahlen, Math. Annalen, t. 54, 1901, p. 108-124. JFM31.0213.02
  34. [32] Minkowski ( Hermann). - Diophantische Approximationen. - Leipzig, B. G. Teubner, 1907 (math. Vorlesung. Univ. Göttingen, 2). JFM38.0220.15
  35. [33] Mordell ( L.J.). - Tschebotareff's theorem on the product of non-homogeneous linear forms, Vierteljahr. Naturf. Gesellsch. Zürich, t. 85, 1940, p. 47-50. Zbl0023.20702MR4274
  36. [34] Mordell ( L.J.). - Thoughts on number theory, J. London math. Soc., t. 21, 1946, p. 58-74. Zbl0060.11804MR18653
  37. [35] Mordell ( L.J.). - The minimum of an inhomogeneous quadratic polynomial in n variables, Math. Z., t. 63, 1956, p. 525-528. Zbl0070.04401MR75242
  38. [36] Mordell ( L.J.). - Tschebotareff's theorem on the product of non-homogeneous linear forms, J. London math. Soc., t. 35, 1960, p. 91-98. Zbl0097.03203MR110695
  39. [37] Remak ( Robert). - Verallgemeinerung eines Minkowskischen Satzes, I., Math. Z., t. 17, 1923, p. 1-34. Zbl49.0101.03MR1544600JFM49.0101.03
  40. [38] Remak ( Robert). - Verallgemeinerung eines Minkowskischen Satzes, II., Math. Z., t. 18, 1924, p. 173-200. MR1544627JFM49.0101.03
  41. [39] Ridout ( D.). - Indefinite quadratic form, Mathematika, t. 5, 1958, p. 122-124. Zbl0085.26901MR103879
  42. [40] Rogers ( C.A.). - The product of n non-homogeneous linear forms, Proc. London math. Soc., Series 3, t. 4, 1954, p. 50-83. Zbl0055.04305MR61633
  43. [41] Tschebotaröw ( N.). - Beweis des Minkowskischen Satzes über lineare inhomogene Formen, Bull. Univ. Kasan, Series 2, t. 94, 1934, p. 3-16. 
  44. [42] Van Der Waerden ( B.L.). - Die Reduktionstheorie der positiven quadratischen Formen, Acta Math., t. 96, 1956, p. 265-309. Zbl0072.03601MR82513
  45. [43] Watson ( G.L.). - The inhomogeneous minimum of an indefinite quadratic form, Proc. Cambridge phil. Soc., t. 55, 1959, p. 368-370. Zbl0092.04905MR109149
  46. [44] Woods ( A.C.). - On a theorem of Tschebotareff, Duke math. J., t. 25, 1958, p. 631-637. Zbl0084.04602MR132139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.