Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie L p

Pascal Auscher[1]

  • [1] Université de Paris-Sud, 91405 Orsay cedex, France

Séminaire Équations aux dérivées partielles (2002-2003)

  • Volume: 2002-2003, page 1-21

How to cite

top

Auscher, Pascal. "Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie $L^{p}$." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-21. <http://eudml.org/doc/11063>.

@article{Auscher2002-2003,
affiliation = {Université de Paris-Sud, 91405 Orsay cedex, France},
author = {Auscher, Pascal},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Calderón-Zygmund operators; interpolation; approximations of identity; -boundedness},
language = {fre},
pages = {1-21},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie $L^\{p\}$},
url = {http://eudml.org/doc/11063},
volume = {2002-2003},
year = {2002-2003},
}

TY - JOUR
AU - Auscher, Pascal
TI - Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie $L^{p}$
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 21
LA - fre
KW - Calderón-Zygmund operators; interpolation; approximations of identity; -boundedness
UR - http://eudml.org/doc/11063
ER -

References

top
  1. Alexopoulos G., An application of homogenization theory to harmonic analysis : Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Can. J. Math., 44, 4, 691-727, 1992. Zbl0792.22005MR1178564
  2. Auscher P., On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on n  : a survey, en préparation. Zbl1221.42022
  3. Auscher P., Coulhon T., Duong X.T. & Hofmann S., Riesz transform on manifolds and heat kernel regularity, en préparation. Zbl1086.58013
  4. Auscher P., Hofmann S., Lacey M., M c Intosh A. & Tchamitchian Ph.. The solution of the Kato square root problem for second order elliptic operators on n , Ann. Math. (2) 156 (2002) 633–654. Zbl1128.35316MR1933726
  5. Auscher P. & Tchamitchian P., Square root problem for divergence operators and related topics, Astérisque, 249, 1998. Zbl0909.35001MR1651262
  6. Auscher, P. & Tchamitchian Ph., Square roots of elliptic second order divergence operators on strongly Lipschitz domains : L 2 theory, à paraître dans Journal d’Analyse Mathématique. Zbl1173.35420
  7. Bakry D., Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in Séminaire de Probabilités XXI, Springer L.N. n o 1247, 137-172, 1987. Zbl0629.58018MR941980
  8. Blunck S. & Kunstmann P., Calderón-Zygmund theory for non-integral operators and the H functional calculus, Rev. Mat. Iberoamericana, to appear. Zbl1057.42010MR2053568
  9. Blunck S. & Kunstmann P., Weak type ( p , p ) estimates for Riesz transforms, preprint. Zbl1138.35315MR2054523
  10. Calderón, A. P., Commutators, singular integrals on Lipschitz curves and applications, Proceedings of the I.C.M. Helsinki 1978 Acad. Sci. Fennica, Helsinki 1980, 85-96. Zbl0429.35077MR562599
  11. Coifman R. & Weiss G., Extensions of Hardy spaces and their use in Analysis, Bull. A.M.S.83, (1977), 569–645. Zbl0358.30023MR447954
  12. Coulhon T. & Duong X.T., Riesz transforms for 1 p 2 , T.A.M.S., 351, 1151-1169, 1999. Zbl0973.58018MR1458299
  13. Coulhon T. & Duong X.T., Maximal Regularity and kernel bounds : observations on a theorem by Hieber and Prüss, Adv. in Diff. Eqs 5, 343-368, 2000. Zbl1001.34046MR1734546
  14. David G. & Journé, J.-L. A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math., 120, 371–398, 1984. Zbl0567.47025MR763911
  15. Duong X.T. & McIntosh A., Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana, 15, 2, 233-265, 1999. Zbl0980.42007MR1715407
  16. Duong X.T. & McIntosh A., The L p boundedness of Riesz transforms associated with divergence form operators, in Workshop on Analysis and Applications, Brisbane, 1997, Proceedings of the Centre for Mathematical Analysis, ANU Canberra 37 (1999), 15-25. Zbl1193.42089
  17. Duong X.T. & Robinson D., Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Anal., 142, 1, 89-128, 1996. Zbl0932.47013MR1419418
  18. Fefferman C. & Stein E., H p spaces in several variables, Acta Math., 129, 137-193, 1972. Zbl0257.46078MR447953
  19. Grigor’yan A., The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. Zbl0776.58035
  20. Grigor’yan A., Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom., 45, 33-52, 1997. Zbl0865.58042
  21. Hebisch, W., A multiplier theorem for Schrödinger operators, Coll. Math. 60/61, 659-664, 1990. Zbl0779.35025MR1096404
  22. Hieber M. & Prüss, J., Heat kernels and maximal L p - L q estimates for parabolic evolution equations, C.P.D.E. 2, 559-568, 2000. Zbl0886.35030
  23. Hofmann S. & Martell J.M., L p bounds for Riesz transforms and square roots associated to second order elliptic operators, preprint. Zbl1074.35031MR2006497
  24. Hörmander L. Estimates for translation invariant operators in L p spaces, Acta Math. 104, 93-140, 1960. Zbl0093.11402MR121655
  25. Li Hong Quan, La transformation de Riesz sur les variétés coniques, J. Funct. Anal., 168, 145-238, 1999. Zbl0937.43004MR1717835
  26. Lohoué N., Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal., 61, 2, 164-201, 1985. Zbl0605.58051MR786621
  27. Lohoué N., Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables, C.R.A.S Paris, 306, I, 327-330, 1988. Zbl0661.43002MR934611
  28. Martell J. M., Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, preprint. Zbl1044.42019MR2033231
  29. Saloff-Coste L., A note on Poincaré, Sobolev and Harnack inequalities, Duke J. Math., 65, I.R.M.N., 27-38, 1992. Zbl0769.58054MR1150597
  30. Saloff-Coste L., Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat., 28, 315-331, 1990. Zbl0715.43009MR1084020
  31. Stein E.M., Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton U.P., 1970. Zbl0193.10502MR252961
  32. Stein E.M., Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton U.P., 1993. Zbl0821.42001MR1232192
  33. Strichartz R., Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52, 48-79, 1983. Zbl0515.58037MR705991
  34. Verdera J., The fall of the doubling condition in harmonic analysis, à paraître dans Publicacions Matematiques. Zbl1025.42008
  35. Weis L., A new approach to maximal regularity, Proc. of the 6th International Conference on evolution equations and their applications in physical and life sciences in Bad Herrenbald 1998, G. Lumer & L weis eds, Marcel Dekker 2000. Zbl0981.35030MR1816431

NotesEmbed ?

top

You must be logged in to post comments.