Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie L p

Pascal Auscher[1]

  • [1] Université de Paris-Sud, 91405 Orsay cedex, France

Séminaire Équations aux dérivées partielles (2002-2003)

  • Volume: 2002-2003, page 1-21

How to cite

top

Auscher, Pascal. "Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie $L^{p}$." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-21. <http://eudml.org/doc/11063>.

@article{Auscher2002-2003,
affiliation = {Université de Paris-Sud, 91405 Orsay cedex, France},
author = {Auscher, Pascal},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Calderón-Zygmund operators; interpolation; approximations of identity; -boundedness},
language = {fre},
pages = {1-21},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie $L^\{p\}$},
url = {http://eudml.org/doc/11063},
volume = {2002-2003},
year = {2002-2003},
}

TY - JOUR
AU - Auscher, Pascal
TI - Au-delà des opérateurs de Calderón-Zygmund  : avancées récentes sur la théorie $L^{p}$
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 21
LA - fre
KW - Calderón-Zygmund operators; interpolation; approximations of identity; -boundedness
UR - http://eudml.org/doc/11063
ER -

References

top
  1. Alexopoulos G., An application of homogenization theory to harmonic analysis : Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Can. J. Math., 44, 4, 691-727, 1992. Zbl0792.22005MR1178564
  2. Auscher P., On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on n  : a survey, en préparation. Zbl1221.42022
  3. Auscher P., Coulhon T., Duong X.T. & Hofmann S., Riesz transform on manifolds and heat kernel regularity, en préparation. Zbl1086.58013
  4. Auscher P., Hofmann S., Lacey M., M c Intosh A. & Tchamitchian Ph.. The solution of the Kato square root problem for second order elliptic operators on n , Ann. Math. (2) 156 (2002) 633–654. Zbl1128.35316MR1933726
  5. Auscher P. & Tchamitchian P., Square root problem for divergence operators and related topics, Astérisque, 249, 1998. Zbl0909.35001MR1651262
  6. Auscher, P. & Tchamitchian Ph., Square roots of elliptic second order divergence operators on strongly Lipschitz domains : L 2 theory, à paraître dans Journal d’Analyse Mathématique. Zbl1173.35420
  7. Bakry D., Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in Séminaire de Probabilités XXI, Springer L.N. n o 1247, 137-172, 1987. Zbl0629.58018MR941980
  8. Blunck S. & Kunstmann P., Calderón-Zygmund theory for non-integral operators and the H functional calculus, Rev. Mat. Iberoamericana, to appear. Zbl1057.42010MR2053568
  9. Blunck S. & Kunstmann P., Weak type ( p , p ) estimates for Riesz transforms, preprint. Zbl1138.35315MR2054523
  10. Calderón, A. P., Commutators, singular integrals on Lipschitz curves and applications, Proceedings of the I.C.M. Helsinki 1978 Acad. Sci. Fennica, Helsinki 1980, 85-96. Zbl0429.35077MR562599
  11. Coifman R. & Weiss G., Extensions of Hardy spaces and their use in Analysis, Bull. A.M.S.83, (1977), 569–645. Zbl0358.30023MR447954
  12. Coulhon T. & Duong X.T., Riesz transforms for 1 p 2 , T.A.M.S., 351, 1151-1169, 1999. Zbl0973.58018MR1458299
  13. Coulhon T. & Duong X.T., Maximal Regularity and kernel bounds : observations on a theorem by Hieber and Prüss, Adv. in Diff. Eqs 5, 343-368, 2000. Zbl1001.34046MR1734546
  14. David G. & Journé, J.-L. A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math., 120, 371–398, 1984. Zbl0567.47025MR763911
  15. Duong X.T. & McIntosh A., Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana, 15, 2, 233-265, 1999. Zbl0980.42007MR1715407
  16. Duong X.T. & McIntosh A., The L p boundedness of Riesz transforms associated with divergence form operators, in Workshop on Analysis and Applications, Brisbane, 1997, Proceedings of the Centre for Mathematical Analysis, ANU Canberra 37 (1999), 15-25. Zbl1193.42089
  17. Duong X.T. & Robinson D., Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Anal., 142, 1, 89-128, 1996. Zbl0932.47013MR1419418
  18. Fefferman C. & Stein E., H p spaces in several variables, Acta Math., 129, 137-193, 1972. Zbl0257.46078MR447953
  19. Grigor’yan A., The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. Zbl0776.58035
  20. Grigor’yan A., Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom., 45, 33-52, 1997. Zbl0865.58042
  21. Hebisch, W., A multiplier theorem for Schrödinger operators, Coll. Math. 60/61, 659-664, 1990. Zbl0779.35025MR1096404
  22. Hieber M. & Prüss, J., Heat kernels and maximal L p - L q estimates for parabolic evolution equations, C.P.D.E. 2, 559-568, 2000. Zbl0886.35030
  23. Hofmann S. & Martell J.M., L p bounds for Riesz transforms and square roots associated to second order elliptic operators, preprint. Zbl1074.35031MR2006497
  24. Hörmander L. Estimates for translation invariant operators in L p spaces, Acta Math. 104, 93-140, 1960. Zbl0093.11402MR121655
  25. Li Hong Quan, La transformation de Riesz sur les variétés coniques, J. Funct. Anal., 168, 145-238, 1999. Zbl0937.43004MR1717835
  26. Lohoué N., Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal., 61, 2, 164-201, 1985. Zbl0605.58051MR786621
  27. Lohoué N., Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables, C.R.A.S Paris, 306, I, 327-330, 1988. Zbl0661.43002MR934611
  28. Martell J. M., Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, preprint. Zbl1044.42019MR2033231
  29. Saloff-Coste L., A note on Poincaré, Sobolev and Harnack inequalities, Duke J. Math., 65, I.R.M.N., 27-38, 1992. Zbl0769.58054MR1150597
  30. Saloff-Coste L., Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat., 28, 315-331, 1990. Zbl0715.43009MR1084020
  31. Stein E.M., Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton U.P., 1970. Zbl0193.10502MR252961
  32. Stein E.M., Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton U.P., 1993. Zbl0821.42001MR1232192
  33. Strichartz R., Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52, 48-79, 1983. Zbl0515.58037MR705991
  34. Verdera J., The fall of the doubling condition in harmonic analysis, à paraître dans Publicacions Matematiques. Zbl1025.42008
  35. Weis L., A new approach to maximal regularity, Proc. of the 6th International Conference on evolution equations and their applications in physical and life sciences in Bad Herrenbald 1998, G. Lumer & L weis eds, Marcel Dekker 2000. Zbl0981.35030MR1816431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.