Malliavin Calculus for a general manifold
Rémi Léandre[1]
- [1] Institut Elie Cartan. Université de Nancy I, 54000. Vandoeuvre-les-Nancy. FRANCE
Séminaire Équations aux dérivées partielles (2002-2003)
- Volume: 2002-2003, page 1-12
Access Full Article
topHow to cite
topLéandre, Rémi. "Malliavin Calculus for a general manifold." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-12. <http://eudml.org/doc/11067>.
@article{Léandre2002-2003,
affiliation = {Institut Elie Cartan. Université de Nancy I, 54000. Vandoeuvre-les-Nancy. FRANCE},
author = {Léandre, Rémi},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {heat kernel analysis; mollifier; short time asymptotics},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Malliavin Calculus for a general manifold},
url = {http://eudml.org/doc/11067},
volume = {2002-2003},
year = {2002-2003},
}
TY - JOUR
AU - Léandre, Rémi
TI - Malliavin Calculus for a general manifold
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 12
LA - eng
KW - heat kernel analysis; mollifier; short time asymptotics
UR - http://eudml.org/doc/11067
ER -
References
top- Aida S. Kusuoka S. Stroock D.W.: On the support of Wiener functionals. In “Asymptotics problems in probability theory: Wiener functionals and asymptotics”. Elworthy K.D. Kusuoka S. Ikeda N. edit. Pitman Res. Math. Series. 284 (1993), 3-34. Zbl0790.60047
- Alexopoulos G.: Sub-Laplacians with drift on Lie groups of polynomial volume growth. Memoirs A.M.S 739 (2002). Zbl0994.22006MR1878341
- Azencott R.: Grandes déviations et applications. Ecole de Probabilités de Saint-Flour VIII. P. Hennequin edit. L.N.M. 774 (1980), 1-176. Zbl0435.60028MR590626
- Bally V. Pardoux E.: Malliavin Calculus for white noise driven parabolic S.P.D.E.S. Potential Analysis. 9.1. (1998), 27-64. Zbl0928.60040MR1644120
- en Arous G.: Développement asymptotique du noyau de la chaleur hors du cut-locus. Ann. Sci. Eco. Norm. Sup. 21 (1988), 307-331. Zbl0699.35047MR974408
- Ben Arous G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier. 39 (1989), 73-99. Zbl0659.35024MR1011978
- Ben Arous G. Léandre R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Prob. Th. Rel. Fields. 90 (1991), 372-402. Zbl0734.60027MR1133372
- Bismut J.M.: Large deviations and the Malliavin Calculus. Progress in Math. 45. Birkhauser (1984). Zbl0537.35003MR755001
- Carlen E. Kusuoka S. Stroock D.W.: Upper bounds for symmetric transition functions. Ann. Inst. Henri. Poincaré. 23 (1987), 145-187. Zbl0634.60066MR898496
- Davies E.B.: Heat kernel and spectral theory. Cambridge Tracts in Math. 92 (1990). Zbl0699.35006MR1103113
- Florchinger P. Léandre R.: Décroissance non exponentielle du noyau du noyau de la chaleur. Prob. Th. Rel. Fields. 95 (1993), 237-267. Zbl0791.60039MR1214089
- Fournier N.: Strict positivity of the solution to a 2-dimensional spatially homogeneous equation with cuttoff. Ann. Inst. Henri. Poincaré. Probab. stat. 31.4. (2001), 481-502. Zbl0981.60056MR1876840
- Freidlin M.I. Wentzell A.D.: Random perturbations of dynamical systems. Springer. (1984). Zbl0922.60006MR722136
- Gaveau B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta. Math. 139 (1977), 95- 153. Zbl0366.22010MR461589
- Hoermander L.: Hypoelliptic second order equation. Acta. Math. 119 (1967), 147-171. Zbl0156.10701MR222474
- Ikeda N. Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland (1981). Zbl0684.60040MR1011252
- Jones J.D.S. Léandre R.: A stochastic approach to the Dirac operator over the free loop space. In “Loop spaces and groups of diffeomorphisms”. Proc. Steklov. Inst. 217 (1997), 253-282. Zbl0915.58097
- Jerison D. Sanchez A.: Subelliptic second order differential operator. In “Complex analysis. III” Berenstein E. Ed. L.N.M. 1227 (1987), 46-78.
- Kusuoka S.: More recent theory of Malliavin Calculus. Sugaku 5 (1992), 155-173. Zbl0796.60059MR1207203
- Léandre R.: Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Ana. 74 (1987), 399-414. Zbl0637.58034
- Léandre R.: Majoration en temps petit de la densité d’une diffusion dégénérée. Prob. Th. Rel. Fields. 74 (1987), 289-294. Zbl0587.60073
- Léandre R.: Intégration dans la fibre associée a une diffusion dégénérée. Prob .Th. Rel. Fields. 76 (1987), 341-358. Zbl0611.60051MR912659
- Léandre R.: Appliquations quantitatives et qualitatives du Calcul de Malliavin. In “French-Japanese Seminar”. M. Métivier S. Watanabe edt. L.N.M. 1322 (1988), 109-133. English translation: in “Geometry of random motion”. R. Durrett M. Pinsky edit. Contemporary Math 75 (1988), 173-197. Zbl0666.60014
- Léandre R.: Volume de boules sous-Riemanniennes et explosion du noyau de la chaleur au sens de Stein. Séminaire de Probabilités XXIII Azéma J. Meyer P.A. edit. L.N.M. 1372 (1989). Zbl0764.60053MR1022930
- Léandre R.: Strange behaviour of the heat kernel on the diagonal. In “Stochastic processes, physics and geometry”. S. Albeverio edit. World Scientific (1990), 516-527.
- Léandre R.: Développement asymptotique de la densité d’une diffusion dégénérée. Forum Math. 4 (1992), 45-75. Zbl0749.60054
- Léandre R.: A simple proof of a large deviation theorem. In “Stochastic analysis”. D. Nualart, M. Sanz-Solé edit. Prog. Prob. 32 Birkhauser (1993), 72-76. Zbl0789.60023
- Léandre R.: Brownian motion over a Kaehler manifold and elliptic genera of level N. In “Stochastic analysis and applications in Physics”. R. Sénéor L. Streit edt. Nato Asie Series. 449 (1994), 193-219.
- Léandre R.: Uniform upper bounds for hypoelliptic kernels with drift. J. Math. Kyoto. Univ. 34 (1994), 263-271. Zbl0814.60050MR1284425
- Léandre R.: Positivity theorem for a general manifold. Preprint (2002). Zbl1274.60176MR2160534
- Léandre R.: Positivity theorem for a stochastic delay equation on a manifold. To be published in the proceedings of the 8-th conference of Vilnius (2002. V. Paulauskas edit). Acta. Appli. Mathe. Zbl1054.58028MR2024031
- Léandre R.: Stochastic Mollifier and Nash inequality. To be published in the proceedings of the satellite conference of stochastic Analysis of I.C.M. 2002 (Ma Z.M Roeckner M. edit). Zbl1081.60041MR2200516
- Malliavin P.: Stochastic Calculus of variation and hypoelliptic operators. In “Stochastic analysis” Itô K. edt. Kinokuyina (1978), 155-263. Zbl0411.60060
- Meyer P.A.: Le Calcul de Malliavin et un peu de pédagogie. R.C.P. 25. Volume 34. Publ. Univ. Strasbourg (1984), 17-43.
- Millet A. Sanz-Solé M.: Points of positive density for the solution to a hyperbolic S.P.D.E. Potential Analysis. 7.3. (1997), 623-659. Zbl0892.60059MR1473646
- Molchanov S. : Diffusion processes and Riemannian geometry. Russ. Math. Surveys. 30 (1975), 1-63. Zbl0315.53026MR413289
- Norris J.: Simplified Malliavin Calculus. Séminaire de Probabilités XX. Azéma J., Yor M. edit. L.N.M. 1204 (1986), 101-130. Zbl0609.60066MR942019
- Nualart D.: The Malliavin Calculus and related topics. Springer (1995). Zbl0837.60050MR1344217
- Takanobu S.: Diagonal short time asymptotics of heat kernels for certain second order differential operator of Hoermander type. Public. RIMS. Kyoto Univ. 24 (1988), 169-203. Zbl0677.35019MR944857
- Takanobu S. Watanabe S.: Asymptotic expansion formulas of the Schilder type for a class of conditional Wiener functional integration. In “Asymptotics problems in probability theory: Wiener functionals and asymptotics”. K.D. Elworthy N. Ikeda edit. Pitman. Res. Notes. Math. Series. 284 (1993), 194-241. Zbl0801.60020
- Varopoulos N. Saloff-Coste L. Coulhon T.: Analysis and geometry on groups. Cambridge Tracts in Maths. 100 (1992). Zbl0813.22003MR1218884
- Watanabe S.: Stochastic analysis and its application. Sugaku 5 (1992), 51-71. Zbl0796.60058MR1161472
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.