Malliavin Calculus for a general manifold

Rémi Léandre[1]

  • [1] Institut Elie Cartan. Université de Nancy I, 54000. Vandoeuvre-les-Nancy. FRANCE

Séminaire Équations aux dérivées partielles (2002-2003)

  • Volume: 2002-2003, page 1-12

How to cite

top

Léandre, Rémi. "Malliavin Calculus for a general manifold." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-12. <http://eudml.org/doc/11067>.

@article{Léandre2002-2003,
affiliation = {Institut Elie Cartan. Université de Nancy I, 54000. Vandoeuvre-les-Nancy. FRANCE},
author = {Léandre, Rémi},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {heat kernel analysis; mollifier; short time asymptotics},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Malliavin Calculus for a general manifold},
url = {http://eudml.org/doc/11067},
volume = {2002-2003},
year = {2002-2003},
}

TY - JOUR
AU - Léandre, Rémi
TI - Malliavin Calculus for a general manifold
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 12
LA - eng
KW - heat kernel analysis; mollifier; short time asymptotics
UR - http://eudml.org/doc/11067
ER -

References

top
  1. Aida S. Kusuoka S. Stroock D.W.: On the support of Wiener functionals. In “Asymptotics problems in probability theory: Wiener functionals and asymptotics”. Elworthy K.D. Kusuoka S. Ikeda N. edit. Pitman Res. Math. Series. 284 (1993), 3-34. Zbl0790.60047
  2. Alexopoulos G.: Sub-Laplacians with drift on Lie groups of polynomial volume growth. Memoirs A.M.S 739 (2002). Zbl0994.22006MR1878341
  3. Azencott R.: Grandes déviations et applications. Ecole de Probabilités de Saint-Flour VIII. P. Hennequin edit. L.N.M. 774 (1980), 1-176. Zbl0435.60028MR590626
  4. Bally V. Pardoux E.: Malliavin Calculus for white noise driven parabolic S.P.D.E.S. Potential Analysis. 9.1. (1998), 27-64. Zbl0928.60040MR1644120
  5. en Arous G.: Développement asymptotique du noyau de la chaleur hors du cut-locus. Ann. Sci. Eco. Norm. Sup. 21 (1988), 307-331. Zbl0699.35047MR974408
  6. Ben Arous G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier. 39 (1989), 73-99. Zbl0659.35024MR1011978
  7. Ben Arous G. Léandre R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Prob. Th. Rel. Fields. 90 (1991), 372-402. Zbl0734.60027MR1133372
  8. Bismut J.M.: Large deviations and the Malliavin Calculus. Progress in Math. 45. Birkhauser (1984). Zbl0537.35003MR755001
  9. Carlen E. Kusuoka S. Stroock D.W.: Upper bounds for symmetric transition functions. Ann. Inst. Henri. Poincaré. 23 (1987), 145-187. Zbl0634.60066MR898496
  10. Davies E.B.: Heat kernel and spectral theory. Cambridge Tracts in Math. 92 (1990). Zbl0699.35006MR1103113
  11. Florchinger P. Léandre R.: Décroissance non exponentielle du noyau du noyau de la chaleur. Prob. Th. Rel. Fields. 95 (1993), 237-267. Zbl0791.60039MR1214089
  12. Fournier N.: Strict positivity of the solution to a 2-dimensional spatially homogeneous equation with cuttoff. Ann. Inst. Henri. Poincaré. Probab. stat. 31.4. (2001), 481-502. Zbl0981.60056MR1876840
  13. Freidlin M.I. Wentzell A.D.: Random perturbations of dynamical systems. Springer. (1984). Zbl0922.60006MR722136
  14. Gaveau B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta. Math. 139 (1977), 95- 153. Zbl0366.22010MR461589
  15. Hoermander L.: Hypoelliptic second order equation. Acta. Math. 119 (1967), 147-171. Zbl0156.10701MR222474
  16. Ikeda N. Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland (1981). Zbl0684.60040MR1011252
  17. Jones J.D.S. Léandre R.: A stochastic approach to the Dirac operator over the free loop space. In “Loop spaces and groups of diffeomorphisms”. Proc. Steklov. Inst. 217 (1997), 253-282. Zbl0915.58097
  18. Jerison D. Sanchez A.: Subelliptic second order differential operator. In “Complex analysis. III” Berenstein E. Ed. L.N.M. 1227 (1987), 46-78. 
  19. Kusuoka S.: More recent theory of Malliavin Calculus. Sugaku 5 (1992), 155-173. Zbl0796.60059MR1207203
  20. Léandre R.: Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Ana. 74 (1987), 399-414. Zbl0637.58034
  21. Léandre R.: Majoration en temps petit de la densité d’une diffusion dégénérée. Prob. Th. Rel. Fields. 74 (1987), 289-294. Zbl0587.60073
  22. Léandre R.: Intégration dans la fibre associée a une diffusion dégénérée. Prob .Th. Rel. Fields. 76 (1987), 341-358. Zbl0611.60051MR912659
  23. Léandre R.: Appliquations quantitatives et qualitatives du Calcul de Malliavin. In “French-Japanese Seminar”. M. Métivier S. Watanabe edt. L.N.M. 1322 (1988), 109-133. English translation: in “Geometry of random motion”. R. Durrett M. Pinsky edit. Contemporary Math 75 (1988), 173-197. Zbl0666.60014
  24. Léandre R.: Volume de boules sous-Riemanniennes et explosion du noyau de la chaleur au sens de Stein. Séminaire de Probabilités XXIII Azéma J. Meyer P.A. edit. L.N.M. 1372 (1989). Zbl0764.60053MR1022930
  25. Léandre R.: Strange behaviour of the heat kernel on the diagonal. In “Stochastic processes, physics and geometry”. S. Albeverio edit. World Scientific (1990), 516-527. 
  26. Léandre R.: Développement asymptotique de la densité d’une diffusion dégénérée. Forum Math. 4 (1992), 45-75. Zbl0749.60054
  27. Léandre R.: A simple proof of a large deviation theorem. In “Stochastic analysis”. D. Nualart, M. Sanz-Solé edit. Prog. Prob. 32 Birkhauser (1993), 72-76. Zbl0789.60023
  28. Léandre R.: Brownian motion over a Kaehler manifold and elliptic genera of level N. In “Stochastic analysis and applications in Physics”. R. Sénéor L. Streit edt. Nato Asie Series. 449 (1994), 193-219. 
  29. Léandre R.: Uniform upper bounds for hypoelliptic kernels with drift. J. Math. Kyoto. Univ. 34 (1994), 263-271. Zbl0814.60050MR1284425
  30. Léandre R.: Positivity theorem for a general manifold. Preprint (2002). Zbl1274.60176MR2160534
  31. Léandre R.: Positivity theorem for a stochastic delay equation on a manifold. To be published in the proceedings of the 8-th conference of Vilnius (2002. V. Paulauskas edit). Acta. Appli. Mathe. Zbl1054.58028MR2024031
  32. Léandre R.: Stochastic Mollifier and Nash inequality. To be published in the proceedings of the satellite conference of stochastic Analysis of I.C.M. 2002 (Ma Z.M Roeckner M. edit). Zbl1081.60041MR2200516
  33. Malliavin P.: Stochastic Calculus of variation and hypoelliptic operators. In “Stochastic analysis” Itô K. edt. Kinokuyina (1978), 155-263. Zbl0411.60060
  34. Meyer P.A.: Le Calcul de Malliavin et un peu de pédagogie. R.C.P. 25. Volume 34. Publ. Univ. Strasbourg (1984), 17-43. 
  35. Millet A. Sanz-Solé M.: Points of positive density for the solution to a hyperbolic S.P.D.E. Potential Analysis. 7.3. (1997), 623-659. Zbl0892.60059MR1473646
  36. Molchanov S. : Diffusion processes and Riemannian geometry. Russ. Math. Surveys. 30 (1975), 1-63. Zbl0315.53026MR413289
  37. Norris J.: Simplified Malliavin Calculus. Séminaire de Probabilités XX. Azéma J., Yor M. edit. L.N.M. 1204 (1986), 101-130. Zbl0609.60066MR942019
  38. Nualart D.: The Malliavin Calculus and related topics. Springer (1995). Zbl0837.60050MR1344217
  39. Takanobu S.: Diagonal short time asymptotics of heat kernels for certain second order differential operator of Hoermander type. Public. RIMS. Kyoto Univ. 24 (1988), 169-203. Zbl0677.35019MR944857
  40. Takanobu S. Watanabe S.: Asymptotic expansion formulas of the Schilder type for a class of conditional Wiener functional integration. In “Asymptotics problems in probability theory: Wiener functionals and asymptotics”. K.D. Elworthy N. Ikeda edit. Pitman. Res. Notes. Math. Series. 284 (1993), 194-241. Zbl0801.60020
  41. Varopoulos N. Saloff-Coste L. Coulhon T.: Analysis and geometry on groups. Cambridge Tracts in Maths. 100 (1992). Zbl0813.22003MR1218884
  42. Watanabe S.: Stochastic analysis and its application. Sugaku 5 (1992), 51-71. Zbl0796.60058MR1161472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.