Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 4, page 481-502
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFournier, Nicolas. "Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff." Annales de l'I.H.P. Probabilités et statistiques 37.4 (2001): 481-502. <http://eudml.org/doc/77696>.
@article{Fournier2001,
author = {Fournier, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Boltzmann equation without cutoff; Poisson measure; stochastic calculus of variations},
language = {eng},
number = {4},
pages = {481-502},
publisher = {Elsevier},
title = {Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff},
url = {http://eudml.org/doc/77696},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Fournier, Nicolas
TI - Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 4
SP - 481
EP - 502
LA - eng
KW - Boltzmann equation without cutoff; Poisson measure; stochastic calculus of variations
UR - http://eudml.org/doc/77696
ER -
References
top- [1] S. Aida, S. Kusuoka, D. Stroock, On the Support of Wiener Functionals, Asymptotic Problems in Probability Theory, 1993. Zbl0790.60047MR1354161
- [2] V. Bally, E. Pardoux, Malliavin Calculus for white noise driven SPDEs, Potential Analysis9 (1) (1998) 27-64. Zbl0928.60040MR1644120
- [3] G. Ben Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probability Theory and Related Fields90 (1991) 377-402. Zbl0734.60027MR1133372
- [4] K. Bichteler, J. Jacod, Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel, in: Séminaire de Probabilités XVII, Lecture Notes in Math., 986, Springer Verlag, 1983, pp. 132-157. Zbl0525.60067MR770406
- [5] L. Desvillettes, About the regularizing properties of the non cutoff Kac equation, Comm. Math. Physics168 (1995) 416-440. Zbl0827.76081MR1324404
- [6] L. Desvillettes, Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Trans. Theory Stat. Phys.26 (1997) 341-357. Zbl0901.76072MR1475459
- [7] L. Desvillettes, C. Graham, S. Méléard, Probabilistic interpretation and numerical approximation of a Kac equation without cutoff, Stochastic Processes and their Applications (2000), to appear. Zbl1009.76081MR1720101
- [8] Fournier N., Existence and regularity study for a 2-dimensional Kac equation without cutoff by a probabilistic approach, The Annals of Applied Probability, to appear. Zbl1056.60052
- [9] N. Fournier, Strict positivity of a solution to a Kac equation without cutoff, J. Statist. Phys. (1999), to appear. Zbl0959.82020
- [10] Fournier N., Strict positivity of the density for Poisson driven S.D.E.s, Stochastics and Stochastics Reports, to appear. Zbl0944.60066
- [11] C. Graham, S. Méléard, Existence and regularity of a solution to a Kac equation without cutoff using Malliavin Calculus, Comm. Math. Physics (1998), to appear. Zbl0953.60057MR1711273
- [12] Y. Ishikawa, Asymptotic behaviour of the transition density for jump type processes in small time, Tohoku Math. J.46 (1994) 443-456. Zbl0818.60074MR1301283
- [13] J. Jacod, Equations différentielles linéaires, la méthode de variation des constantes, in: Séminaire de Probabilités XVI, Lecture Notes in Math., 920, Springer Verlag, 1982, pp. 442-448. Zbl0479.60063MR658705
- [14] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer Verlag, 1987. Zbl0635.60021MR959133
- [15] R. Léandre, Densité en temps petit d'un processus de sauts, Séminaire de Probabilités XXI, 1987. Zbl0616.60078
- [16] R. Léandre, Strange behaviour of the heat kernel on the diagonal, in: Albeverio S. (Ed.), Stochastic Processes, Physics and Geometry, World Scientific, 1990, pp. 516-527. MR1124229
- [17] J. Picard, Density in small time at accessible points for jump processes, Stochastic Processes and their Applications67 (1997) 251-279. Zbl0889.60088MR1449834
- [18] A. Pulvirenti, B. Wennberg, A Maxwellian lowerbound for solutions to the Boltzmann equation, Comm. Math. Phys.183 (1997) 145-160. Zbl0866.76077MR1461954
- [19] H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z.W.66 (1978) 559-592. Zbl0389.60079MR512334
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.