Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff

Nicolas Fournier

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 4, page 481-502
  • ISSN: 0246-0203

How to cite

top

Fournier, Nicolas. "Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff." Annales de l'I.H.P. Probabilités et statistiques 37.4 (2001): 481-502. <http://eudml.org/doc/77696>.

@article{Fournier2001,
author = {Fournier, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Boltzmann equation without cutoff; Poisson measure; stochastic calculus of variations},
language = {eng},
number = {4},
pages = {481-502},
publisher = {Elsevier},
title = {Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff},
url = {http://eudml.org/doc/77696},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Fournier, Nicolas
TI - Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 4
SP - 481
EP - 502
LA - eng
KW - Boltzmann equation without cutoff; Poisson measure; stochastic calculus of variations
UR - http://eudml.org/doc/77696
ER -

References

top
  1. [1] S. Aida, S. Kusuoka, D. Stroock, On the Support of Wiener Functionals, Asymptotic Problems in Probability Theory, 1993. Zbl0790.60047MR1354161
  2. [2] V. Bally, E. Pardoux, Malliavin Calculus for white noise driven SPDEs, Potential Analysis9 (1) (1998) 27-64. Zbl0928.60040MR1644120
  3. [3] G. Ben Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probability Theory and Related Fields90 (1991) 377-402. Zbl0734.60027MR1133372
  4. [4] K. Bichteler, J. Jacod, Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel, in: Séminaire de Probabilités XVII, Lecture Notes in Math., 986, Springer Verlag, 1983, pp. 132-157. Zbl0525.60067MR770406
  5. [5] L. Desvillettes, About the regularizing properties of the non cutoff Kac equation, Comm. Math. Physics168 (1995) 416-440. Zbl0827.76081MR1324404
  6. [6] L. Desvillettes, Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Trans. Theory Stat. Phys.26 (1997) 341-357. Zbl0901.76072MR1475459
  7. [7] L. Desvillettes, C. Graham, S. Méléard, Probabilistic interpretation and numerical approximation of a Kac equation without cutoff, Stochastic Processes and their Applications (2000), to appear. Zbl1009.76081MR1720101
  8. [8] Fournier N., Existence and regularity study for a 2-dimensional Kac equation without cutoff by a probabilistic approach, The Annals of Applied Probability, to appear. Zbl1056.60052
  9. [9] N. Fournier, Strict positivity of a solution to a Kac equation without cutoff, J. Statist. Phys. (1999), to appear. Zbl0959.82020
  10. [10] Fournier N., Strict positivity of the density for Poisson driven S.D.E.s, Stochastics and Stochastics Reports, to appear. Zbl0944.60066
  11. [11] C. Graham, S. Méléard, Existence and regularity of a solution to a Kac equation without cutoff using Malliavin Calculus, Comm. Math. Physics (1998), to appear. Zbl0953.60057MR1711273
  12. [12] Y. Ishikawa, Asymptotic behaviour of the transition density for jump type processes in small time, Tohoku Math. J.46 (1994) 443-456. Zbl0818.60074MR1301283
  13. [13] J. Jacod, Equations différentielles linéaires, la méthode de variation des constantes, in: Séminaire de Probabilités XVI, Lecture Notes in Math., 920, Springer Verlag, 1982, pp. 442-448. Zbl0479.60063MR658705
  14. [14] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer Verlag, 1987. Zbl0635.60021MR959133
  15. [15] R. Léandre, Densité en temps petit d'un processus de sauts, Séminaire de Probabilités XXI, 1987. Zbl0616.60078
  16. [16] R. Léandre, Strange behaviour of the heat kernel on the diagonal, in: Albeverio S. (Ed.), Stochastic Processes, Physics and Geometry, World Scientific, 1990, pp. 516-527. MR1124229
  17. [17] J. Picard, Density in small time at accessible points for jump processes, Stochastic Processes and their Applications67 (1997) 251-279. Zbl0889.60088MR1449834
  18. [18] A. Pulvirenti, B. Wennberg, A Maxwellian lowerbound for solutions to the Boltzmann equation, Comm. Math. Phys.183 (1997) 145-160. Zbl0866.76077MR1461954
  19. [19] H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z.W.66 (1978) 559-592. Zbl0389.60079MR512334

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.