Asymptotic stability of solitary waves for nonlinear Schrödinger equations
Séminaire Équations aux dérivées partielles (2002-2003)
- Volume: 2002-2003, page 1-15
Access Full Article
topHow to cite
topPerelman, Galina. "Asymptotic stability of solitary waves for nonlinear Schrödinger equations." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-15. <http://eudml.org/doc/11074>.
@article{Perelman2002-2003,
author = {Perelman, Galina},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equation; soliton; asymptotic stability; large time asymptotics},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Asymptotic stability of solitary waves for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/11074},
volume = {2002-2003},
year = {2002-2003},
}
TY - JOUR
AU - Perelman, Galina
TI - Asymptotic stability of solitary waves for nonlinear Schrödinger equations
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 15
LA - eng
KW - nonlinear Schrödinger equation; soliton; asymptotic stability; large time asymptotics
UR - http://eudml.org/doc/11074
ER -
References
top- Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations, I, II, Arch. Rat. Mech. Anal. 1983, 82 (4), 313-375. Zbl0533.35029MR695535
- Buslaev V.S.; Perelman, G.S. Scattering for the nonlinear Schrödinger equation: states close to a soliton. St. Petersburg Math. J. 1993, 4 (6),1111-1143. Zbl0853.35112MR1199635
- Cuccagna, S. Stabilization of solutions to nonlinear Schrödinger equation, Comm. Pure Appl. Math. 200154, 1110-1145. Zbl1031.35129MR1835384
- Ginibre, J.; Velo G. On a class of nonlinear Schrödinger equations I, II. J.Func.Anal. 1979, 32, 1-71. Zbl0396.35029MR533219
- Ginibre, J.; Velo G. On a class of nonlinear Schrödinger equations III. Ann. Inst. H.Poincare -Phys. Theor. 1978, 28 (3), 287-316. Zbl0397.35012MR498408
- Hagedorn, G. Asymptotic completeness for the impact parameter approximation to three particle scattering. Ann. Inst. Henri Poincaré. 1982, 36 (1), 19-40. Zbl0482.47003MR653016
- McLeod, K. Uniqueness of positive radial solutions of in . Trans. Amer. Math. Soc. 1993, 339 (2), 495-505. Zbl0804.35034MR1201323
- Nier, F.; Soffer, A. Dispersion and Strichartz estimates for some finite rank perturbations of the Laplace operator. J. of Func. Analysis, to appear. Zbl1034.35017MR1964550
- Perelman, G. Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equation. In: Spectral Theory, Microlocal Analysis, Singular Manifolds, M.Demuth et al., eds., Math. Top. 14, Berlin, Akademie Verlag, 1997, pp. 78-137. Zbl0931.35164MR1608275
- Perelman, G. Asymptotic stability of solitons for nonlinear Schrödinger equations, preprint. Zbl1067.35113
- Soffer A.; Weinstein, M.I. Multichannel nonlinear scattering theory for nonintegrable equations I. Commun. Math. Phys. 1990, 133 (1), 119-146. Zbl0721.35082MR1071238
- Soffer A.; Weinstein, M.I. Multichannel nonlinear scattering theory for nonintegrable equations II. J. Diff. Eq. 1992, 98 (2), 376-390. Zbl0795.35073MR1170476
- Weinstein, M.I. Modulation stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 1985, 16 (3), 472-491. Zbl0583.35028MR783974
- Weinstein, M.I. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 1986, 39 (1), 51-68. Zbl0594.35005MR820338
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.