On a class of non linear Schrödinger equations. III. Special theories in dimensions 1, 2 and 3
Annales de l'I.H.P. Physique théorique (1978)
- Volume: 28, Issue: 3, page 287-316
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] J. Ginibre, G. Velo, On a class of non linear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal., in press. Zbl0396.35028
- [2] J. Ginibre, G. Velo, On a class of non linear Schrödinger equations. II. Scattering theory, general case. J. Funct. Anal., in press. Zbl0396.35029
- [3] J.E. Lin, W. Strauss, J. Funct. Anal., in press.
- [4] J.B. Baillon, T. Cazenave, M. Figueira, C. R. Acad. Sci. Paris, t. 284, 1977, p. 869-872. Zbl0349.35048MR433025
Citations in EuDML Documents
top- G. Perelman, Stability of solitary waves for nonlinear Schrödinger equation
- Cédric Galusinski, A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
- Jean Bourgain, On nonlinear Schrödinger equations
- Galina Perelman, Asymptotic stability of solitary waves for nonlinear Schrödinger equations
- Galina Perelman, On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D
- Cédric Galusinski, A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
- Nakao Hayashi, Tohru Ozawa, Scattering theory in the weighted spaces for some Schrödinger equations
- Nakao Hayashi, Yoshio Tsutsumi, Scattering theory for Hartree type equations
- Jean Ginibre, Théorie de la diffusion pour des équations semi linéaires