Fonction L des courbes modulaires

Gérard Ligozat

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1969-1970)

  • Volume: 11, Issue: 1, page 1-10

How to cite

top

Ligozat, Gérard. "Fonction L des courbes modulaires." Séminaire Delange-Pisot-Poitou. Théorie des nombres 11.1 (1969-1970): 1-10. <http://eudml.org/doc/110749>.

@article{Ligozat1969-1970,
author = {Ligozat, Gérard},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {fre},
number = {1},
pages = {1-10},
publisher = {Secrétariat mathématique},
title = {Fonction L des courbes modulaires},
url = {http://eudml.org/doc/110749},
volume = {11},
year = {1969-1970},
}

TY - JOUR
AU - Ligozat, Gérard
TI - Fonction L des courbes modulaires
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1969-1970
PB - Secrétariat mathématique
VL - 11
IS - 1
SP - 1
EP - 10
LA - fre
UR - http://eudml.org/doc/110749
ER -

References

top
  1. [1] Eichler ( M.). - Quaternäre quadratische Formen und die Riemann Vermutung für die Kongruenzzetafunktion, Archiv der Math. , t. 5, 1954, p. 355-366. Zbl0059.03804MR63406
  2. [2] Fricke ( R.). - Die elliptischen Fonktionen und ihre Anwendungen. 2ter Teil. - Leipzig, B. G. Teubner, 1922. JFM48.0432.01
  3. [3] Néron ( A.). - Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. - Paris, Presses universitaires de France, 1964 (Institut des Hautes Etudes Scientifiques. Publications mathématiques, 21). Zbl0132.41403MR179172
  4. [4] Ogg ( A.P.). - Elliptic curves and wild ramification, Amer. J. of Math., t. 89, 1967, p. 1-21. Zbl0147.39803MR207694
  5. [5] Ogg ( A.P. ) . - Curves of small conductor, J. für die reine und angew. Math. (à paraître). 
  6. [6] Shimura ( G.). - Correspondances modulaires et les fonctions ζ de courbes algébriques, J. Math. Soc. Japan, t. 10, 1958, p. 3-18. Zbl0081.07603
  7. [7] Shimura ( G.) and Taniyama ( Y. ) . - Complex multiplication of abelian varieties and its applications to number theory. - Tokyo, Mathematical Society of Japan, 1961(Publications of the Mathematical Society of Japan, 6). Zbl0112.03502MR125113
  8. [8] Stephens ( N.M.). - The diophantine équation X3 + Y3 = DZ3 ... , J. für die reine und angew. Math., t. 231, 1968, p. 121-162. Zbl0221.10023MR229651
  9. [9] Swinnerton-Dyer ( P. ). - The conjectures of Birch and Swinnerton-Dyer and of Tate, Proceedings of a conference on local fields [1966. Driebergen], p. 132-157. - Berlin, Springer-Verlag, 1967. Zbl0197.47101MR230727
  10. [10] Tate ( J.). - On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, 1965/66, n° 306, 26 p. Zbl0199.55604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.