Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians

Mouez Dimassi[1]; Vesselin Petkov[2]

  • [1] Département de Mathématiques, Université Paris 13, Villetaneuse, France
  • [2] Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France

Séminaire Équations aux dérivées partielles (2003-2004)

  • Volume: 2003-2004, page 1-12

How to cite


Dimassi, Mouez, and Petkov, Vesselin. "Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians." Séminaire Équations aux dérivées partielles 2003-2004 (2003-2004): 1-12. <>.

affiliation = {Département de Mathématiques, Université Paris 13, Villetaneuse, France; Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France},
author = {Dimassi, Mouez, Petkov, Vesselin},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians},
url = {},
volume = {2003-2004},
year = {2003-2004},

AU - Dimassi, Mouez
AU - Petkov, Vesselin
TI - Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2003-2004
SP - 1
EP - 12
LA - eng
UR -
ER -


  1. J. Avron, I. Herbst and B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883. Zbl0399.35029MR518109
  2. J. Avron, I. W. Herbst, Spectral and scattering theory of Schrödinger operators related to the Stark effect, Commun. Math. Phys. 52 (1977), 239-254. Zbl0351.47007MR468862
  3. E. Bardos, J-C. Guillot and J. Ralston, La relation de Poisson pour l’équation des ondes dans un ouvert non-borné. Commun. PDE. 7, 905–958 (1982). Zbl0496.35067
  4. J.-F. Bony, Résonances dans des domaines de taille h , Inter. Math. Res. Not. 16 (2001), 817-847. Zbl1034.35084MR1853138
  5. J.-F. Bony, Minoration du nombre de résonances engendrées par une trajectoire fermée, Commun. PDE. 27 (2002), 1021-1078. Zbl1213.35332MR1916556
  6. V. Bruneau, V. Petkov, Meromorphic continuation of the spectral shift function, Duke Math. J. 116 (2003), 389-430. Zbl1033.35081MR1958093
  7. V. Bruneau, V. Petkov, Eigenvalues of the reference operator and semiclassical resonances, J. Funct. Anal. 202 (2003), 571- 590. Zbl1025.35013MR1990538
  8. M. Dimassi, Développements asymptotiques de l’opérateur de Schrödinger avec champ magnétique fort, Commun. PDE. 26 (2001), 596-627. Zbl0984.35118
  9. M. Dimassi, Spectral shift function and resonances for perturbations of periodic Schrödinger operators, to appear in J. Funct. Anal. Zbl1137.35343MR2149923
  10. M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999. xii+227. Zbl0926.35002MR1735654
  11. M. Dimassi and V. Petkov, Spectral shift function and resonances for non semi-bounded and Stark Hamiltonians, Journal Math. Pures et Appl. 82 (2003), 1303-1342. Zbl1174.81317MR2020924
  12. M. Dimassi and V. Petkov, Resonances for magnetic Hamiltonians in two dimensional case, Preprint, 2004 (mp-arc 04-137). Zbl1069.35062
  13. C. Ferrari and H. Kovarik, On the Exponential Decay of Magnetic Stark Resonances , Preprint, 2003. Zbl1086.81042MR2176791
  14. C. Ferrari and H. Kovarik, Resonances Width in Crossed Electric and Magnetic Fields, Preprint, 2003. Zbl1075.81062MR2090007
  15. B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, pp. 118-197 in Lecture Notes in Physics, No. 345, Springer, Berlin, 1989. Zbl0699.35189MR1037319
  16. I. W. Herbst, Unitary equivalence of Stark Hamiltonians, Math. Z. 155 (1977), 55-70. Zbl0338.47009MR449318
  17. I. W. Herbst, Dilation analytically in constant electric field, Commun. Math. Phys. 64 (1979), 279-298. Zbl0447.47028MR520094
  18. P. D. Hislop, I. M. Sigal, Introduction to spectral theory with applications to Schrödinger operators, Applied Math. Sciences, 113, Springer Verlag, Berlin, 1996. Zbl0855.47002MR1361167
  19. V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer, Berlin, 1988. Zbl0906.35003MR1631419
  20. V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients, III, Schrödinger operators with a strong magnetic field, Preprint, 2003. MR1807155
  21. A. Jensen, Scattering theory for Stark Hamiltonians. Spectral and inverse spectral theory (Bangalore, 1993). Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 4, 599–651. Zbl0827.47006MR1319880
  22. M. Klein, D. Robert, X.-P. Wang, Breit-Wigner formula for the scattering phase in the Stark effect, Commun. Math. Phys. 131 (1990), 109-124. Zbl0705.35093MR1062749
  23. E. Korotyaev and A. Pushinitski, Trace formulae and high energy asymptotics for the perturbed three-dimensional Stark operator, to appear in J. Funct. Anal. 
  24. P. Lax, R. Phillips, The scatering of sound waves by an obstacle, Comm. Pures Appl. Math. 30 (1977), 195-233. Zbl0335.35075MR442510
  25. M. Melgaard, G. Rosenblum, Eigenvalues asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic field of full rank, Commun. PDE. 28 (2003), 1-52. Zbl1044.35038MR1978311
  26. R. Melrose, Scattering theory and the trace of wave group. J. Funct. Anal. 45 (1982), 429-440. Zbl0525.47007MR645644
  27. R. Melrose, Weyl asymptotics for the phase in obstacle scattering, Commun. PDE., 13 (1988), 1431-1439. Zbl0686.35089MR956828
  28. V. Petkov, M. Zworski, Breit-Wigner approximation and the distribution of resonances, Commun. Math. Phys. 204 (1999), 329-351, Erratum, Commun. Math. Phys. 214 (2000), 733-735. Zbl1046.81551MR1704278
  29. V. Petkov, M. Zworski, Semi-classical estimates on the scattering determinant, Annales H. Poincaré, 2 (2001), 675-711. Zbl1041.81041MR1852923
  30. G. Raikov, Eigenvalue asymptotics for teh Schrödinger operator with homogeneous magnetic potential and decreasing electiric potential. I. Behavior near the essential spectrum tips, Commun. PDE, 15 (1990), 407-434. Zbl0739.35055MR1044429
  31. G. Raikov, S. Warzel, Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials, Rev. Math. Phys. 14 (2002), 1051-1072. Zbl1033.81038MR1939760
  32. D. Robert, Autour de l’approximation semi-classique, PM, 68, Basel, Birkhäuser 1987. Zbl0621.35001
  33. D. Robert, X. P. Wang, Existence of time-delay operators for Stark Hamiltonians, Commun. PDE. 14 (1989), 63-98. Zbl0677.35080MR973270
  34. D. Robert, X. P. Wang, Time-delay and spectral density for Stark Hamiltonians, (II), Asymptotics of trace formulae, Chin. Ann. Math. Ser. B 12 (1991), 358-384. Zbl0747.35029MR1130263
  35. I. M. Sigal, Geometric theory of Stark resonances in multi-elecrin systems, Commun. Math. Phys. 19 (1988), 287-314. Zbl0672.58050MR968699
  36. J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,490, Dordrecht, Kluwer Acad. Publ.1997. Zbl0877.35090MR1451399
  37. J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachrichten, 221 (2001), 95-149. Zbl0979.35109MR1806367
  38. J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991),729-769. Zbl0752.35046MR1115789
  39. J. Sjöstrand and M. Zworski, Lower bound on the number of scattering poles, II, J. Funct. Anal. 123 (1994), 336-367. Zbl0823.35137MR1283032
  40. X. P. Wang, Bounds on widths of resonances for Stark Hamiltonians, Acta Math. Sinica, Ser. B, 6 (1990), 100-119. Zbl0714.35056MR1060788
  41. X. P. Wang, On the Magnetic Stark Resonances in Two Dimensional Case, Lecture Notes in Physics, 403, Springer, Berlin, 1992, pp. 211-233. Zbl0787.35054MR1181250
  42. X. P. Wang, Barrier resonances in strong magnetic fields, Commun. PDE. 17 (1992), 1539-1566. Zbl0795.35097MR1187621
  43. D. Yafaev, Mathematical Scattering Theory, Amer. Math. Society, Providence, RI, 1992. Zbl0761.47001MR1180965
  44. K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect, J. Fac. Sc. Univ. Tokyo, Sect. I, 26 (1979), 377-390. Zbl0429.35027MR560003
  45. M. Zworski, Poisson formulae for resonances, Séminaire E.D.P., Ecole Polytechnique, Exposé XIII, 1966-1997. Zbl1255.35084MR1482819

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.