Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians
Mouez Dimassi[1]; Vesselin Petkov[2]
- [1] Département de Mathématiques, Université Paris 13, Villetaneuse, France
- [2] Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France
Séminaire Équations aux dérivées partielles (2003-2004)
- Volume: 2003-2004, page 1-12
Access Full Article
topHow to cite
topDimassi, Mouez, and Petkov, Vesselin. "Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians." Séminaire Équations aux dérivées partielles 2003-2004 (2003-2004): 1-12. <http://eudml.org/doc/11077>.
@article{Dimassi2003-2004,
affiliation = {Département de Mathématiques, Université Paris 13, Villetaneuse, France; Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France},
author = {Dimassi, Mouez, Petkov, Vesselin},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians},
url = {http://eudml.org/doc/11077},
volume = {2003-2004},
year = {2003-2004},
}
TY - JOUR
AU - Dimassi, Mouez
AU - Petkov, Vesselin
TI - Semiclassical Resonances and trace formulae for non-semi-bounded Hamiltonians
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2003-2004
SP - 1
EP - 12
LA - eng
UR - http://eudml.org/doc/11077
ER -
References
top- J. Avron, I. Herbst and B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883. Zbl0399.35029MR518109
- J. Avron, I. W. Herbst, Spectral and scattering theory of Schrödinger operators related to the Stark effect, Commun. Math. Phys. 52 (1977), 239-254. Zbl0351.47007MR468862
- E. Bardos, J-C. Guillot and J. Ralston, La relation de Poisson pour l’équation des ondes dans un ouvert non-borné. Commun. PDE. 7, 905–958 (1982). Zbl0496.35067
- J.-F. Bony, Résonances dans des domaines de taille , Inter. Math. Res. Not. 16 (2001), 817-847. Zbl1034.35084MR1853138
- J.-F. Bony, Minoration du nombre de résonances engendrées par une trajectoire fermée, Commun. PDE. 27 (2002), 1021-1078. Zbl1213.35332MR1916556
- V. Bruneau, V. Petkov, Meromorphic continuation of the spectral shift function, Duke Math. J. 116 (2003), 389-430. Zbl1033.35081MR1958093
- V. Bruneau, V. Petkov, Eigenvalues of the reference operator and semiclassical resonances, J. Funct. Anal. 202 (2003), 571- 590. Zbl1025.35013MR1990538
- M. Dimassi, Développements asymptotiques de l’opérateur de Schrödinger avec champ magnétique fort, Commun. PDE. 26 (2001), 596-627. Zbl0984.35118
- M. Dimassi, Spectral shift function and resonances for perturbations of periodic Schrödinger operators, to appear in J. Funct. Anal. Zbl1137.35343MR2149923
- M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999. xii+227. Zbl0926.35002MR1735654
- M. Dimassi and V. Petkov, Spectral shift function and resonances for non semi-bounded and Stark Hamiltonians, Journal Math. Pures et Appl. 82 (2003), 1303-1342. Zbl1174.81317MR2020924
- M. Dimassi and V. Petkov, Resonances for magnetic Hamiltonians in two dimensional case, Preprint, 2004 (mp-arc 04-137). Zbl1069.35062
- C. Ferrari and H. Kovarik, On the Exponential Decay of Magnetic Stark Resonances , Preprint, 2003. Zbl1086.81042MR2176791
- C. Ferrari and H. Kovarik, Resonances Width in Crossed Electric and Magnetic Fields, Preprint, 2003. Zbl1075.81062MR2090007
- B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, pp. 118-197 in Lecture Notes in Physics, No. 345, Springer, Berlin, 1989. Zbl0699.35189MR1037319
- I. W. Herbst, Unitary equivalence of Stark Hamiltonians, Math. Z. 155 (1977), 55-70. Zbl0338.47009MR449318
- I. W. Herbst, Dilation analytically in constant electric field, Commun. Math. Phys. 64 (1979), 279-298. Zbl0447.47028MR520094
- P. D. Hislop, I. M. Sigal, Introduction to spectral theory with applications to Schrödinger operators, Applied Math. Sciences, 113, Springer Verlag, Berlin, 1996. Zbl0855.47002MR1361167
- V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer, Berlin, 1988. Zbl0906.35003MR1631419
- V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients, III, Schrödinger operators with a strong magnetic field, Preprint, 2003. MR1807155
- A. Jensen, Scattering theory for Stark Hamiltonians. Spectral and inverse spectral theory (Bangalore, 1993). Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 4, 599–651. Zbl0827.47006MR1319880
- M. Klein, D. Robert, X.-P. Wang, Breit-Wigner formula for the scattering phase in the Stark effect, Commun. Math. Phys. 131 (1990), 109-124. Zbl0705.35093MR1062749
- E. Korotyaev and A. Pushinitski, Trace formulae and high energy asymptotics for the perturbed three-dimensional Stark operator, to appear in J. Funct. Anal.
- P. Lax, R. Phillips, The scatering of sound waves by an obstacle, Comm. Pures Appl. Math. 30 (1977), 195-233. Zbl0335.35075MR442510
- M. Melgaard, G. Rosenblum, Eigenvalues asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic field of full rank, Commun. PDE. 28 (2003), 1-52. Zbl1044.35038MR1978311
- R. Melrose, Scattering theory and the trace of wave group. J. Funct. Anal. 45 (1982), 429-440. Zbl0525.47007MR645644
- R. Melrose, Weyl asymptotics for the phase in obstacle scattering, Commun. PDE., 13 (1988), 1431-1439. Zbl0686.35089MR956828
- V. Petkov, M. Zworski, Breit-Wigner approximation and the distribution of resonances, Commun. Math. Phys. 204 (1999), 329-351, Erratum, Commun. Math. Phys. 214 (2000), 733-735. Zbl1046.81551MR1704278
- V. Petkov, M. Zworski, Semi-classical estimates on the scattering determinant, Annales H. Poincaré, 2 (2001), 675-711. Zbl1041.81041MR1852923
- G. Raikov, Eigenvalue asymptotics for teh Schrödinger operator with homogeneous magnetic potential and decreasing electiric potential. I. Behavior near the essential spectrum tips, Commun. PDE, 15 (1990), 407-434. Zbl0739.35055MR1044429
- G. Raikov, S. Warzel, Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials, Rev. Math. Phys. 14 (2002), 1051-1072. Zbl1033.81038MR1939760
- D. Robert, Autour de l’approximation semi-classique, PM, 68, Basel, Birkhäuser 1987. Zbl0621.35001
- D. Robert, X. P. Wang, Existence of time-delay operators for Stark Hamiltonians, Commun. PDE. 14 (1989), 63-98. Zbl0677.35080MR973270
- D. Robert, X. P. Wang, Time-delay and spectral density for Stark Hamiltonians, (II), Asymptotics of trace formulae, Chin. Ann. Math. Ser. B 12 (1991), 358-384. Zbl0747.35029MR1130263
- I. M. Sigal, Geometric theory of Stark resonances in multi-elecrin systems, Commun. Math. Phys. 19 (1988), 287-314. Zbl0672.58050MR968699
- J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,490, Dordrecht, Kluwer Acad. Publ.1997. Zbl0877.35090MR1451399
- J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachrichten, 221 (2001), 95-149. Zbl0979.35109MR1806367
- J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991),729-769. Zbl0752.35046MR1115789
- J. Sjöstrand and M. Zworski, Lower bound on the number of scattering poles, II, J. Funct. Anal. 123 (1994), 336-367. Zbl0823.35137MR1283032
- X. P. Wang, Bounds on widths of resonances for Stark Hamiltonians, Acta Math. Sinica, Ser. B, 6 (1990), 100-119. Zbl0714.35056MR1060788
- X. P. Wang, On the Magnetic Stark Resonances in Two Dimensional Case, Lecture Notes in Physics, 403, Springer, Berlin, 1992, pp. 211-233. Zbl0787.35054MR1181250
- X. P. Wang, Barrier resonances in strong magnetic fields, Commun. PDE. 17 (1992), 1539-1566. Zbl0795.35097MR1187621
- D. Yafaev, Mathematical Scattering Theory, Amer. Math. Society, Providence, RI, 1992. Zbl0761.47001MR1180965
- K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark effect, J. Fac. Sc. Univ. Tokyo, Sect. I, 26 (1979), 377-390. Zbl0429.35027MR560003
- M. Zworski, Poisson formulae for resonances, Séminaire E.D.P., Ecole Polytechnique, Exposé XIII, 1966-1997. Zbl1255.35084MR1482819
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.