Page 1 Next

Displaying 1 – 20 of 362

Showing per page

A general perturbation formula for electromagnetic fields in presence of low volume scatterers

Roland Griesmaier (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This...

A general perturbation formula for electromagnetic fields in presence of low volume scatterers

Roland Griesmaier (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This...

A Simple Example of Localized Parametric Resonance for the Wave Equation

Colombini, Ferruccio, Rauch, Jeffrey (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35L05, 35P25, 47A40.The problem studied here was suggested to us by V. Petkov. Since the beginning of our careers, we have benefitted from his insights in partial differential equations and mathematical physics. In his writings and many discussions, the conjuction of deep analysis and specially interesting problems has been a source inspiration for us.The research of J. Rauch is partially supported by the U.S. National Science Foundation under grant NSF-DMS-0104096...

A trace formula for resonances and application to semi-classical Schrödinger operators

Johannes Sjöstrand (1996/1997)

Séminaire Équations aux dérivées partielles

On décrit une formule de trace [S] pour les résonances, qui est valable en toute dimension et pour les perturbations à longue portée du Laplacien. On établit une nouvelle application à l’éxistence de nombreuses résonances pour des opérateurs de Schrödinger semi-classiques.

Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits

Didier Robert, H. Tamura (1989)

Annales de l'institut Fourier

We study the semi-classical asymptotic behavior as ( h 0 ) of scattering amplitudes for Schrödinger operators - ( 1 / 2 ) h 2 Δ + V . The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.

Asymptotic behaviour of the scattering phase for non-trapping obstacles

Veselin Petkov, Georgi Popov (1982)

Annales de l'institut Fourier

Let S ( λ ) be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle 𝒪 R n , n 3 with Dirichlet or Neumann boundary conditions on 𝒪 . The function s ( λ ) , called scattering phase, is determined from the equality e - 2 π i s ( λ ) = det S ( λ ) . We show that s ( λ ) has an asymptotic expansion s ( λ ) j = 0 c j λ n - j as λ + and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.

Currently displaying 1 – 20 of 362

Page 1 Next