Sur le caractère bien posé des équations d’Euler avec surface libre

David Lannes[1]

  • [1] MAB, Université Bordeaux 1 et CNRS UMR 5466, 351 Cours de la Libération, 33405 Talence Cedex, France

Séminaire Équations aux dérivées partielles (2003-2004)

  • page 1-12

How to cite

top

Lannes, David. "Sur le caractère bien posé des équations d’Euler avec surface libre." Séminaire Équations aux dérivées partielles (2003-2004): 1-12. <http://eudml.org/doc/11081>.

@article{Lannes2003-2004,
affiliation = {MAB, Université Bordeaux 1 et CNRS UMR 5466, 351 Cours de la Libération, 33405 Talence Cedex, France},
author = {Lannes, David},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur le caractère bien posé des équations d’Euler avec surface libre},
url = {http://eudml.org/doc/11081},
year = {2003-2004},
}

TY - JOUR
AU - Lannes, David
TI - Sur le caractère bien posé des équations d’Euler avec surface libre
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 12
LA - fre
UR - http://eudml.org/doc/11081
ER -

References

top
  1. R. Coifman, Y. MeyerNonlinear harmonic analysis and analytic dependence, Pseudodifferential operators and applications (Notre Dame, Ind., 1984), 71–78, Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985. Zbl0587.35004MR812284
  2. W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787–1003. Zbl0577.76030MR795808
  3. W. Craig, D. Nicholls, Traveling gravity water waves in two and three dimensions. Eur. J. Mech. B Fluids 21 (2002), no. 6, 615–641. Zbl1084.76509MR1947187
  4. W.Craig, U. Schanz, C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 5, 615–667. Zbl0892.76008MR1470784
  5. D. Lannes, Well-Posedness of the Water-Waves Equations, Preprint Université Bordeaux I, 2003. Zbl1069.35056MR2138139
  6. V. I. Nalimov, The Cauchy-Poisson problem. (Russian) Dinamika Splošn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, (1974), 104–210, 254. MR609882
  7. M. Taylor, Partial differential equations. II. Qualitative studies of linear equations, Applied Mathematical Sciences, 116. Springer-Verlag, New York, 1996. Zbl0869.35003MR1395149
  8. F. TrèvesIntroduction to pseudodifferential and Fourier integral operators. Vol. 1. Pseudodifferential operators, The University Series in Mathematics. Plenum Press, New York-London, 1980. Zbl0453.47027MR597144
  9. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2 -D, Invent. Math. 130 (1997), no. 1, 39–72. Zbl0892.76009MR1471885
  10. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999), no. 2, 445–495. Zbl0921.76017MR1641609
  11. H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49–96. Zbl0493.76018MR660822

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.