The modulational regime of three-dimensional water waves and the Davey-Stewartson system

Walter Craig; Ulrich Schanz; Catherine Sulem

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 5, page 615-667
  • ISSN: 0294-1449

How to cite

top

Craig, Walter, Schanz, Ulrich, and Sulem, Catherine. "The modulational regime of three-dimensional water waves and the Davey-Stewartson system." Annales de l'I.H.P. Analyse non linéaire 14.5 (1997): 615-667. <http://eudml.org/doc/78423>.

@article{Craig1997,
author = {Craig, Walter, Schanz, Ulrich, Sulem, Catherine},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {analyticity of Dirichlet-Neumann operator; gravity-capillary waves; wave amplitude; wavepacket; surface elevation; Taylor series; pseudo-differential operators; multiple scale expansions},
language = {eng},
number = {5},
pages = {615-667},
publisher = {Gauthier-Villars},
title = {The modulational regime of three-dimensional water waves and the Davey-Stewartson system},
url = {http://eudml.org/doc/78423},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Craig, Walter
AU - Schanz, Ulrich
AU - Sulem, Catherine
TI - The modulational regime of three-dimensional water waves and the Davey-Stewartson system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 5
SP - 615
EP - 667
LA - eng
KW - analyticity of Dirichlet-Neumann operator; gravity-capillary waves; wave amplitude; wavepacket; surface elevation; Taylor series; pseudo-differential operators; multiple scale expansions
UR - http://eudml.org/doc/78423
ER -

References

top
  1. [1] M.J. Ablowitz and H. Segur, J. Fluid Mech., Vol. 92, 1979, pp. 691-715. Zbl0413.76009MR544892
  2. [2] D.J. Benney and G.J. Roskes, Stud. Appl. Math., Vol. 48, 1969, pp. 377-385. Zbl0216.52904
  3. [3] M. Christ and J.L. Journé, Acta Math., Vol. 159, 1987, pp. 51-80. Zbl0645.42017MR906525
  4. [4] R.R. Coifman and Y. Meyer, Proc. Symp. Pure Math., Vol. 43, 1985, pp. 71-78. Zbl0587.35004MR812284
  5. [5] P. Collet and J.P. Eckmann, Comm. Math. Phys., Vol. 132, 1990, pp. 139-153. Zbl0756.35096MR1069205
  6. [6] W. Craig, Comm. Part. Diff. Eq., Vol. 10, 1985, pp. 787-1003. Zbl0577.76030MR795808
  7. [7] W. Craig and M. Groves, Wave Motion, Vol. 19, 1994, pp. 367-389. Zbl0929.76015MR1285131
  8. [8] W. Craig, C. Sulem and P.L. Sulem, Nonlinearity, Vol. 108, 1992, pp. 497-522. 
  9. [9] W. Craig and C. Sulem, J. Comp. Phys., Vol. 108, 1993, pp. 73-83. Zbl0778.76072MR1239970
  10. [10] A. Davey and K. Stewartson, Proc. Roy. Soc. A, Vol. 338, 1974, pp. 101-110. Zbl0282.76008MR349126
  11. [11] V.D. Djordjevic and L.G. Redekopp, J. Fluid Mech., Vol. 79, 1977, pp. 703-714. Zbl0351.76016MR443555
  12. [12] P.R. Garabedian and M. Schiffer, J. Analyse Mathématique, Vol. 2, 1952, pp. 281-368. Zbl0052.33203MR60117
  13. [13] J.M. Ghidalia and J.C. Saut, Nonlinearity, Vol. 3, 1990, pp. 475-506. Zbl0727.35111MR1054584
  14. [14] M. Guzmán-Gómez, PhD thesis, University of Toronto, 1995. 
  15. [15] H. Hasimoto and H. Ono, J. Phys. Soc. Japan, Vol. 33, 1972, pp. 805-811. 
  16. [16] N. Hayashi and J.C. Saut, Diff. and Integral Equations, Vol. 8, 1995, pp. 1657-1675. Zbl0827.35120MR1347974
  17. [17] T. Kano and T. Nishida, J. Math Kyoto Univ., Vol. 19, 1979, pp. 335-370. Zbl0419.76013MR545714
  18. [18] T. Kano and T. Nishida, Osaka J. Math., Vol. 23, 1986, pp. 389-413. Zbl0622.76021MR856894
  19. [19] P. Kirrmann, G. Schneider and A. Mielke, Proceedings of the Royal Society of Edinburgh, Vol. 122A, 1992, pp. 85-91. Zbl0786.35122
  20. [20] F. Linares and G. Ponce, Ann. Inst. Poincaré, Analyse nonlinéaire, Vol. 10, 1993, pp. 523-548. Zbl0807.35136MR1249105
  21. [21] R. de la Llave and P. Panayotaros, Water waves on the surface of the sphere, J. Nonlinear Science, Vol. 6, No. 2, 1996, pp. 147-167. Zbl0844.76008MR1381401
  22. [22] A. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985. Zbl0565.35003MR847245
  23. [23] L.F. Mcgoldrick, J. Fluid. Mech., Vol. 52, 1972, pp. 725-751. Zbl0258.76006
  24. [24] G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Physica D, Vol. 72, 1994, pp. 61-86. Zbl0815.35104MR1270855
  25. [25] R. Pierce and E. Wayne, On the validity of mean-field amplitude equations for counterpropagating wavetrains, Nonlinearity, Vol. 8, No. 5, 1995, pp. 769-779. Zbl0833.35128MR1355042
  26. [26] M. Tsutsumi, J. Math. Anal. Appl., Vol. 82, 1994, pp. 680-704. Zbl0808.35142
  27. [27] V.E. Zakharov, J. Appl. Mech. Tech. Phys., Vol. 9, 1968, pp. 190-194. 

Citations in EuDML Documents

top
  1. J. Bona, D. Lannes, J.-C. Saut, Asymptotic behaviors of internal waves
  2. David Lannes, Derivation and mathematical analysis of a nonlocal model for large amplitude internal waves
  3. David Lannes, Sur le caractère bien posé des équations d’Euler avec surface libre
  4. Dario Bambusi, Galerkin averaging method and Poincaré normal form for some quasilinear PDEs
  5. Thomas Alazard, About global existence and asymptotic behavior for two dimensional gravity water waves
  6. T. Alazard, N. Burq, C. Zuily, Low regularity Cauchy theory for the water-waves problem: canals and swimming pools

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.