The modulational regime of three-dimensional water waves and the Davey-Stewartson system
Walter Craig; Ulrich Schanz; Catherine Sulem
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 5, page 615-667
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCraig, Walter, Schanz, Ulrich, and Sulem, Catherine. "The modulational regime of three-dimensional water waves and the Davey-Stewartson system." Annales de l'I.H.P. Analyse non linéaire 14.5 (1997): 615-667. <http://eudml.org/doc/78423>.
@article{Craig1997,
author = {Craig, Walter, Schanz, Ulrich, Sulem, Catherine},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {analyticity of Dirichlet-Neumann operator; gravity-capillary waves; wave amplitude; wavepacket; surface elevation; Taylor series; pseudo-differential operators; multiple scale expansions},
language = {eng},
number = {5},
pages = {615-667},
publisher = {Gauthier-Villars},
title = {The modulational regime of three-dimensional water waves and the Davey-Stewartson system},
url = {http://eudml.org/doc/78423},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Craig, Walter
AU - Schanz, Ulrich
AU - Sulem, Catherine
TI - The modulational regime of three-dimensional water waves and the Davey-Stewartson system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 5
SP - 615
EP - 667
LA - eng
KW - analyticity of Dirichlet-Neumann operator; gravity-capillary waves; wave amplitude; wavepacket; surface elevation; Taylor series; pseudo-differential operators; multiple scale expansions
UR - http://eudml.org/doc/78423
ER -
References
top- [1] M.J. Ablowitz and H. Segur, J. Fluid Mech., Vol. 92, 1979, pp. 691-715. Zbl0413.76009MR544892
- [2] D.J. Benney and G.J. Roskes, Stud. Appl. Math., Vol. 48, 1969, pp. 377-385. Zbl0216.52904
- [3] M. Christ and J.L. Journé, Acta Math., Vol. 159, 1987, pp. 51-80. Zbl0645.42017MR906525
- [4] R.R. Coifman and Y. Meyer, Proc. Symp. Pure Math., Vol. 43, 1985, pp. 71-78. Zbl0587.35004MR812284
- [5] P. Collet and J.P. Eckmann, Comm. Math. Phys., Vol. 132, 1990, pp. 139-153. Zbl0756.35096MR1069205
- [6] W. Craig, Comm. Part. Diff. Eq., Vol. 10, 1985, pp. 787-1003. Zbl0577.76030MR795808
- [7] W. Craig and M. Groves, Wave Motion, Vol. 19, 1994, pp. 367-389. Zbl0929.76015MR1285131
- [8] W. Craig, C. Sulem and P.L. Sulem, Nonlinearity, Vol. 108, 1992, pp. 497-522.
- [9] W. Craig and C. Sulem, J. Comp. Phys., Vol. 108, 1993, pp. 73-83. Zbl0778.76072MR1239970
- [10] A. Davey and K. Stewartson, Proc. Roy. Soc. A, Vol. 338, 1974, pp. 101-110. Zbl0282.76008MR349126
- [11] V.D. Djordjevic and L.G. Redekopp, J. Fluid Mech., Vol. 79, 1977, pp. 703-714. Zbl0351.76016MR443555
- [12] P.R. Garabedian and M. Schiffer, J. Analyse Mathématique, Vol. 2, 1952, pp. 281-368. Zbl0052.33203MR60117
- [13] J.M. Ghidalia and J.C. Saut, Nonlinearity, Vol. 3, 1990, pp. 475-506. Zbl0727.35111MR1054584
- [14] M. Guzmán-Gómez, PhD thesis, University of Toronto, 1995.
- [15] H. Hasimoto and H. Ono, J. Phys. Soc. Japan, Vol. 33, 1972, pp. 805-811.
- [16] N. Hayashi and J.C. Saut, Diff. and Integral Equations, Vol. 8, 1995, pp. 1657-1675. Zbl0827.35120MR1347974
- [17] T. Kano and T. Nishida, J. Math Kyoto Univ., Vol. 19, 1979, pp. 335-370. Zbl0419.76013MR545714
- [18] T. Kano and T. Nishida, Osaka J. Math., Vol. 23, 1986, pp. 389-413. Zbl0622.76021MR856894
- [19] P. Kirrmann, G. Schneider and A. Mielke, Proceedings of the Royal Society of Edinburgh, Vol. 122A, 1992, pp. 85-91. Zbl0786.35122
- [20] F. Linares and G. Ponce, Ann. Inst. Poincaré, Analyse nonlinéaire, Vol. 10, 1993, pp. 523-548. Zbl0807.35136MR1249105
- [21] R. de la Llave and P. Panayotaros, Water waves on the surface of the sphere, J. Nonlinear Science, Vol. 6, No. 2, 1996, pp. 147-167. Zbl0844.76008MR1381401
- [22] A. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985. Zbl0565.35003MR847245
- [23] L.F. Mcgoldrick, J. Fluid. Mech., Vol. 52, 1972, pp. 725-751. Zbl0258.76006
- [24] G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Physica D, Vol. 72, 1994, pp. 61-86. Zbl0815.35104MR1270855
- [25] R. Pierce and E. Wayne, On the validity of mean-field amplitude equations for counterpropagating wavetrains, Nonlinearity, Vol. 8, No. 5, 1995, pp. 769-779. Zbl0833.35128MR1355042
- [26] M. Tsutsumi, J. Math. Anal. Appl., Vol. 82, 1994, pp. 680-704. Zbl0808.35142
- [27] V.E. Zakharov, J. Appl. Mech. Tech. Phys., Vol. 9, 1968, pp. 190-194.
Citations in EuDML Documents
top- J. Bona, D. Lannes, J.-C. Saut, Asymptotic behaviors of internal waves
- David Lannes, Derivation and mathematical analysis of a nonlocal model for large amplitude internal waves
- David Lannes, Sur le caractère bien posé des équations d’Euler avec surface libre
- Dario Bambusi, Galerkin averaging method and Poincaré normal form for some quasilinear PDEs
- Thomas Alazard, About global existence and asymptotic behavior for two dimensional gravity water waves
- T. Alazard, N. Burq, C. Zuily, Low regularity Cauchy theory for the water-waves problem: canals and swimming pools
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.