Microlocal analysis and seismic imaging
Séminaire Équations aux dérivées partielles (2003-2004)
- Volume: 2003-2004, page 1-20
Access Full Article
topAbstract
topHow to cite
topStolk, Christiaan. "Microlocal analysis and seismic imaging." Séminaire Équations aux dérivées partielles 2003-2004 (2003-2004): 1-20. <http://eudml.org/doc/11083>.
@article{Stolk2003-2004,
abstract = {We study certain Fourier integral operators arising in the inversion of data from reflection seismology.},
author = {Stolk, Christiaan},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-20},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Microlocal analysis and seismic imaging},
url = {http://eudml.org/doc/11083},
volume = {2003-2004},
year = {2003-2004},
}
TY - JOUR
AU - Stolk, Christiaan
TI - Microlocal analysis and seismic imaging
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2003-2004
SP - 1
EP - 20
AB - We study certain Fourier integral operators arising in the inversion of data from reflection seismology.
LA - eng
UR - http://eudml.org/doc/11083
ER -
References
top- G. Beylkin. Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform. J. Math. Phys., 26(1):99–108, 1985. MR776132
- J. F. Claerbout. Imaging the Earth’s Interior. Blackwell Scientific Publications, Oxford, 1985.
- J. J. Duistermaat. Fourier Integral Operators. Birkhäuser, Boston, 1996. Zbl0841.35137MR1362544
- Victor Guillemin. On some results of Gelʼfand in integral geometry. In Pseudodifferential operators and applications (Notre Dame, Ind., 1984), pages 149–155. Amer. Math. Soc., Providence, RI, 1985. Zbl0576.58028MR812288
- L. Hörmander. The Analysis of Linear Partial Differential Operators, volume 3,4. Springer-Verlag, Berlin, 1985. Zbl0601.35001
- V. P. Maslov and M. V. Fedoriuk. Semi-Classical Approximation in Quantum Mechanics. D. Reidel Publishing Company, 1981. Zbl0458.58001MR634377
- C. J. Nolan and W. W. Symes. Global solution of a linearized inverse problem for the wave equation. Comm. Partial Differential Equations, 22(5-6):919–952, 1997. Zbl0889.35122MR1452173
- Rakesh. A linearized inverse problem for the wave equation. Comm. Partial Differential Equations, 13(5):573–601, 1988. Zbl0671.35078MR919443
- P. Shen, W. W. Symes, and C. C. Stolk. Differential semblance velocity analysis by wave-equation migration. In 73rd Ann. Internat. Mtg., pages 2132–2135. Soc. of Expl. Geophys., 2003. http://seg.org/publications.
- C. C. Stolk and M. V. De Hoop. Microlocal analysis of seismic inverse scattering in anisotropic elastic media. Comm. Pure Appl. Math., 55(3):261–301, 2002. Zbl1018.86002MR1866365
- C. C. Stolk and M. V. De Hoop. Modeling of seismic data in the downward continuation approach. To appear in SIAM Journal on Applied Mathematics, 2004. http://www.math.polytechnique.fr/~stolk. Zbl1074.86003
- C. C. Stolk and M. V. De Hoop. Seismic inverse scattering in the downward continuation approach. Preprint, 2004. http://www.math.polytechnique.fr/~stolk. Zbl1231.35315
- W. W. Symes. Extensions and nonlinear inverse scattering: Lecture at opening conference of IPRPI, April 2004. http://www.trip.caam.rice.edu/txt/tripinfo/other_list.html.
- W. W. Symes and J. Carazzone. Velocity inversion by differential semblance optimization. Geophysics, 56(5):654–663, 1991.
- A. P. E. Ten Kroode, D. J. Smit, and A. R. Verdel. A microlocal analysis of migration. Wave Motion, 28:149–172, 1998. Zbl1074.74582MR1637771
- François Treves. Introduction to Pseudodifferential and Fourier Integral Operators, volume 2. Plenum Press, New York, 1980. Zbl0453.47027MR597145
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.