Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1

Francisco Diaz Y Diaz

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1973-1974)

  • Volume: 15, Issue: 2, page G1-G10

How to cite

top

Diaz Y Diaz, Francisco. "Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1." Séminaire Delange-Pisot-Poitou. Théorie des nombres 15.2 (1973-1974): G1-G10. <http://eudml.org/doc/110863>.

@article{DiazYDiaz1973-1974,
author = {Diaz Y Diaz, Francisco},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {fre},
number = {2},
pages = {G1-G10},
publisher = {Secrétariat mathématique},
title = {Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1},
url = {http://eudml.org/doc/110863},
volume = {15},
year = {1973-1974},
}

TY - JOUR
AU - Diaz Y Diaz, Francisco
TI - Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1973-1974
PB - Secrétariat mathématique
VL - 15
IS - 2
SP - G1
EP - G10
LA - fre
UR - http://eudml.org/doc/110863
ER -

References

top
  1. [1] Châtelet ( A.). - L'arithmétique des corps quadratiques. - Genève, l'Enseignement mathématique, 1962 (Monographies de l'Enseignement mathématique, 9). Zbl0202.33003MR172863
  2. [2] Mitchell ( H.). - On classes of ideals in a quadratic field, Annals of Math., Series 2, t. 27, 1926, p. 297-314. Zbl52.0132.02MR1502734JFM52.0132.02
  3. [3] Nagell ( T. ) . - Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Hamburg Univ., t. 1, 1922, p. 140-150. Zbl48.0170.03JFM48.0170.03
  4. [4] Neumann ( O.). - Relativ-quadratische Zahlkörper deren Klassenzahlen durch 3 teilbar sind, Math. Nachr., t. 56, 1973, p. 281-306. Zbl0268.12002MR327714
  5. [5] Scholz ( A.). - Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. für reine und angew Math., t. 166, 1931, p. 201-203. Zbl0004.05104
  6. [6] Shanks ( D.) and Weinberger ( P. ) . - A quadratic field of prime discriminant requiring three generators for its class group and related theory, Acta Arithm., Warszawa, t. 21, 1972, p. 71-87. Zbl0249.12010MR309899
  7. [7] Shanks ( D. ) . - New types of quadratic fields having three invariants divisible by 3 , J. number theory, t. 4, 1972, p. 537-556. Zbl0265.12001MR313220
  8. [8] Shanks ( D.) and Serafin ( R. ) . - Quadratic fields with four invariants divisible by 3 , Math. of Comput . , t. 27, 1973, p. 183-187. Zbl0252.12001MR330097
  9. [9] Shanks ( D.) and Neild ( C.). - On the 3-rank of quadratic fields and the Euler product, Math. of Comput., t. 28, 1974, p. 279-291. Zbl0277.12005MR352042
  10. [10] Yamamoto ( Y. ) . - On unramified Galois extensions of quadratic number fields, Osaka J. Math., t. 7, 1970, p. 57-76 Zbl0222.12003MR266898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.