Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique
Alexandre Fedotov[1]; Frédéric Klopp[2]
- [1] Département de Physique Mathématique, Université d’État de Saint-Pétersbourg, 1, Ulianovskaja, 198904 Saint-Pétersbourg – Petrodvorets, Russie
- [2] Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France
Séminaire Équations aux dérivées partielles (2003-2004)
- page 1-23
Access Full Article
topAbstract
topHow to cite
topFedotov, Alexandre, and Klopp, Frédéric. "Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique." Séminaire Équations aux dérivées partielles (2003-2004): 1-23. <http://eudml.org/doc/11097>.
@article{Fedotov2003-2004,
abstract = {This paper is devoted to the description of our recent results on the spectral behavior of one-dimensional adiabatic quasi-periodic Schrödinger operators. The specific operator we study is a slow periodic perturbation of an incommensurate periodic Schrödinger operator, and we are interested in energies where the perturbation creates a strong interaction between two consecutive bands of the background periodic operator. We describe the location of the spectrum and its nature and discuss the various new resonance phenomena due to the interaction of the spectral bands of the unperturbed periodic operator.},
affiliation = {Département de Physique Mathématique, Université d’État de Saint-Pétersbourg, 1, Ulianovskaja, 198904 Saint-Pétersbourg – Petrodvorets, Russie; Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France},
author = {Fedotov, Alexandre, Klopp, Frédéric},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-23},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique},
url = {http://eudml.org/doc/11097},
year = {2003-2004},
}
TY - JOUR
AU - Fedotov, Alexandre
AU - Klopp, Frédéric
TI - Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 23
AB - This paper is devoted to the description of our recent results on the spectral behavior of one-dimensional adiabatic quasi-periodic Schrödinger operators. The specific operator we study is a slow periodic perturbation of an incommensurate periodic Schrödinger operator, and we are interested in energies where the perturbation creates a strong interaction between two consecutive bands of the background periodic operator. We describe the location of the spectrum and its nature and discuss the various new resonance phenomena due to the interaction of the spectral bands of the unperturbed periodic operator.
LA - fre
UR - http://eudml.org/doc/11097
ER -
References
top- J. Avron and B. Simon. Almost periodic Schrödinger operators, II. the integrated density of states. Duke Mathematical Journal, 50 :369–391, 1983. Zbl0544.35030MR700145
- V. Buslaev and A. Fedotov. Bloch solutions of difference equations. St Petersburg Math. Journal, 7 :561–594, 1996. Zbl0859.39001MR1356532
- M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
- A. Fedotov and F. Klopp. On the interaction of two spectral bands of periodic Schrödinger operator through an adiabatic incommensurate periodic perturbation : the non-resonant case. In progress. Zbl1292.34050
- A. Fedotov and F. Klopp. On the interaction of two spectral bands of periodic Schrödinger operator through an adiabatic incommensurate periodic perturbation : the resonant case. In progress. Zbl1292.34050
- A. Fedotov and F. Klopp. A complex WKB analysis for adiabatic problems. Asymptotic Analysis, 27 :219–264, 2001. Zbl1001.34082MR1858917
- A. Fedotov and F. Klopp. On the absolutely continuous spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit. Preprint, Université Paris-Nord, 2001. Zbl1101.34069MR2156718
- A. Fedotov and F. Klopp. On the singular spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit. To appear in Ann. H. Poincaré, 2004. Zbl1059.81057
- A. Fedotov and F. Klopp. Geometric tools of the adiabatic complex WKB method. To appear in Asymp. Anal, 2004. Zbl1070.34124MR2097997
- A. Fedotov and F. Klopp. Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys., 227(1) :1–92, 2002. Zbl1004.81008MR1903839
- N. E. Fisova. On the global quasimomentum in solid state physics. In Mathematical methods in physics (Londrina, 1999), pages 98–141. World Sci. Publishing, River Edge, NJ, 2000. Zbl0996.81124MR1775625
- E. M. Harrell. Double wells. Comm. Math. Phys., 75(3) :239–261, 1980. Zbl0445.35036MR581948
- B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit I. Communications in Partial Differential Equations, 9 :337–408, 1984. Zbl0546.35053MR740094
- A. R. It.s and V. B. Matveev. Hill operators with a finite number of lacunae. Funkcional. Anal. i Priložen., 9(1) :69–70, 1975. Zbl0318.34038MR390355
- Y. Last and B. Simon. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math., 135(2) :329–367, 1999. Zbl0931.34066MR1666767
- H. McKean and P. van Moerbeke. The spectrum of Hill’s equation. Inventiones Mathematicae, 30 :217–274, 1975. Zbl0319.34024
- H. P. McKean and E. Trubowitz. Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2) :143–226, 1976. Zbl0339.34024
- L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. Zbl0752.47002MR1223779
- B. Simon. Instantons, double wells and large deviations. Bull. Amer. Math. Soc. (N.S.), 8(2) :323–326, 1983. Zbl0529.35059MR684899
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.