Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique

Alexandre Fedotov[1]; Frédéric Klopp[2]

  • [1] Département de Physique Mathématique, Université d’État de Saint-Pétersbourg, 1, Ulianovskaja, 198904 Saint-Pétersbourg – Petrodvorets, Russie
  • [2] Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France

Séminaire Équations aux dérivées partielles (2003-2004)

  • page 1-23

Abstract

top
Dans cet article, nous décrivons nos résultats récents sur la théorie spectrale d’une classe d’opérateurs de Schrödinger quasi-périodiques adiabatiques sur la droite réelle. Ces opérateurs sont des perturbations périodiques lentes d’opérateurs périodiques. Nous étudions le spectre à des énergies auxquelles la perturbation lente crée une interaction forte entre deux bandes spectrales consécutives de l’opérateur périodique non perturbé. Nous décrivons le lieu et la nature du spectre ; nous nous intéressons plus particulièrement à différents phénomènes de résonance engendrés par l’interaction entre les bandes spectrales de l’opérateur périodique non perturbé.

How to cite

top

Fedotov, Alexandre, and Klopp, Frédéric. "Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique." Séminaire Équations aux dérivées partielles (2003-2004): 1-23. <http://eudml.org/doc/11097>.

@article{Fedotov2003-2004,
abstract = {This paper is devoted to the description of our recent results on the spectral behavior of one-dimensional adiabatic quasi-periodic Schrödinger operators. The specific operator we study is a slow periodic perturbation of an incommensurate periodic Schrödinger operator, and we are interested in energies where the perturbation creates a strong interaction between two consecutive bands of the background periodic operator. We describe the location of the spectrum and its nature and discuss the various new resonance phenomena due to the interaction of the spectral bands of the unperturbed periodic operator.},
affiliation = {Département de Physique Mathématique, Université d’État de Saint-Pétersbourg, 1, Ulianovskaja, 198904 Saint-Pétersbourg – Petrodvorets, Russie; Département de Mathématique, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France},
author = {Fedotov, Alexandre, Klopp, Frédéric},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-23},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique},
url = {http://eudml.org/doc/11097},
year = {2003-2004},
}

TY - JOUR
AU - Fedotov, Alexandre
AU - Klopp, Frédéric
TI - Opérateurs de Schrödinger quasi-périodiques adiabatiques : Interactions entre les bandes spectrales d’un opérateur périodique
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 23
AB - This paper is devoted to the description of our recent results on the spectral behavior of one-dimensional adiabatic quasi-periodic Schrödinger operators. The specific operator we study is a slow periodic perturbation of an incommensurate periodic Schrödinger operator, and we are interested in energies where the perturbation creates a strong interaction between two consecutive bands of the background periodic operator. We describe the location of the spectrum and its nature and discuss the various new resonance phenomena due to the interaction of the spectral bands of the unperturbed periodic operator.
LA - fre
UR - http://eudml.org/doc/11097
ER -

References

top
  1. J. Avron and B. Simon. Almost periodic Schrödinger operators, II. the integrated density of states. Duke Mathematical Journal, 50 :369–391, 1983. Zbl0544.35030MR700145
  2. V. Buslaev and A. Fedotov. Bloch solutions of difference equations. St Petersburg Math. Journal, 7 :561–594, 1996. Zbl0859.39001MR1356532
  3. M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
  4. A. Fedotov and F. Klopp. On the interaction of two spectral bands of periodic Schrödinger operator through an adiabatic incommensurate periodic perturbation : the non-resonant case. In progress. Zbl1292.34050
  5. A. Fedotov and F. Klopp. On the interaction of two spectral bands of periodic Schrödinger operator through an adiabatic incommensurate periodic perturbation : the resonant case. In progress. Zbl1292.34050
  6. A. Fedotov and F. Klopp. A complex WKB analysis for adiabatic problems. Asymptotic Analysis, 27 :219–264, 2001. Zbl1001.34082MR1858917
  7. A. Fedotov and F. Klopp. On the absolutely continuous spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit. Preprint, Université Paris-Nord, 2001. Zbl1101.34069MR2156718
  8. A. Fedotov and F. Klopp. On the singular spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit. To appear in Ann. H. Poincaré, 2004. Zbl1059.81057
  9. A. Fedotov and F. Klopp. Geometric tools of the adiabatic complex WKB method. To appear in Asymp. Anal, 2004. Zbl1070.34124MR2097997
  10. A. Fedotov and F. Klopp. Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys., 227(1) :1–92, 2002. Zbl1004.81008MR1903839
  11. N. E. Fisova. On the global quasimomentum in solid state physics. In Mathematical methods in physics (Londrina, 1999), pages 98–141. World Sci. Publishing, River Edge, NJ, 2000. Zbl0996.81124MR1775625
  12. E. M. Harrell. Double wells. Comm. Math. Phys., 75(3) :239–261, 1980. Zbl0445.35036MR581948
  13. B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit I. Communications in Partial Differential Equations, 9 :337–408, 1984. Zbl0546.35053MR740094
  14. A. R. It.s and V. B. Matveev. Hill operators with a finite number of lacunae. Funkcional. Anal. i Priložen., 9(1) :69–70, 1975. Zbl0318.34038MR390355
  15. Y. Last and B. Simon. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math., 135(2) :329–367, 1999. Zbl0931.34066MR1666767
  16. H. McKean and P. van Moerbeke. The spectrum of Hill’s equation. Inventiones Mathematicae, 30 :217–274, 1975. Zbl0319.34024
  17. H. P. McKean and E. Trubowitz. Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2) :143–226, 1976. Zbl0339.34024
  18. L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. Zbl0752.47002MR1223779
  19. B. Simon. Instantons, double wells and large deviations. Bull. Amer. Math. Soc. (N.S.), 8(2) :323–326, 1983. Zbl0529.35059MR684899

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.