Stability of standing waves for nonlinear Schrödinger equations with potentials

Reika Fukuizumi

Séminaire Équations aux dérivées partielles (2003-2004)

  • page 1-8

How to cite

top

Fukuizumi, Reika. "Stability of standing waves for nonlinear Schrödinger equations with potentials." Séminaire Équations aux dérivées partielles (2003-2004): 1-8. <http://eudml.org/doc/11098>.

@article{Fukuizumi2003-2004,
author = {Fukuizumi, Reika},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equation; waves; Bose-Einstein condensate},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stability of standing waves for nonlinear Schrödinger equations with potentials},
url = {http://eudml.org/doc/11098},
year = {2003-2004},
}

TY - JOUR
AU - Fukuizumi, Reika
TI - Stability of standing waves for nonlinear Schrödinger equations with potentials
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 8
LA - eng
KW - nonlinear Schrödinger equation; waves; Bose-Einstein condensate
UR - http://eudml.org/doc/11098
ER -

References

top
  1. G. Baym and C. J. Pethick, “Ground-state properties of magnetically trapped Bose-condensed rubidium gas”, Phys. Rev. Lett. Vol. 76 (1996), 6–9. 
  2. H. Berestycki and T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires”, C. R. Acad. Sci. Paris. Vol. 293 (1981), 489–492. Zbl0492.35010
  3. T. Cazenave, “An introduction to nonlinear Schrödinger equations,” Textos de Métods Matemáticos 26, IM-UFRJ, Rio de Janeiro, 1993. 
  4. T. Cazenave and P. L. Lions, “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Commun. Math. Phys. Vol. 85 (1982), 549–561. Zbl0513.35007
  5. R. Y. Chiao, E. Garmine and C. H. Townes, “Self-trapping of optical beams”, Phys. Rev. Lett. Vol. 13 (1964), 479–482. 
  6. C. Cid and P. Felmer, “Orbital stability of standing waves for the nonlinear Schrödinger equation with potential”, Rev. Math. Phys. Vol. 13 (2001), 1529–1546. Zbl1038.35112
  7. G. Fibich and X. P. Wang, “Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities”, Physica D. Vol. 175 (2003), 96–108. Zbl1098.74614
  8. R. Fukuizumi, “Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential”, Discrete Contin. Dynam. Systems. Vol. 7 (2001), 525–544. Zbl0992.35094
  9. R. Fukuizumi and M. Ohta, “Instability of standing waves for nonlinear Schrödinger equations with potentials”, Differential and Integral Eqs. Vol. 16 (2003), 691–706. Zbl1031.35132
  10. R. Fukuizumi and M. Ohta, “Stability of standing waves for nonlinear Schrödinger equations with potentials”, Differential and Integral Eqs. Vol. 16 (2003), 111–128. Zbl1031.35131
  11. R. Fukuizumi, “Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials,” Preprint. Zbl1107.35100
  12. A. Griffin, D. W. Snoke and S. Stringari, “Bose-Einstein condensation,” Cambridge University Press, Cambridge, 1995. 
  13. M. Grillakis, J. Shatah and W. Strauss, “Stability theory of solitary waves in the presence of symmetry I”, J. Funct. Anal. Vol. 74 (1987), 160–197. Zbl0656.35122
  14. M. Grillakis, J. Shatah and W. Strauss, “Stability theory of solitary waves in the presence of symmetry II”, J. Funct. Anal. Vol. 94 (1990), 308–348. Zbl0711.58013
  15. M. Hirose and M. Ohta, “Structure of positive radial solutions to scalar field equations with harmonic potential”, J. Differential Eqs. Vol. 178 (2002), 519–540. Zbl1011.34039
  16. M. Hirose and M. Ohta, “Uniqueness of positive solutions to scalar field equations with harmonic potential”, Preprint. Zbl1160.34014
  17. Y. Kabeya and K. Tanaka, “Uniqueness of positive radial solutions of semilinear elliptic equations in n and Séré’s non-degeneracy condition”, Commun. Partial. Differential. Eqs. Vol. 24 (1999), 563–598. Zbl0930.35064
  18. M. Kunze, T. Küpper, V. K. Mezentsev, E. G. Shapiro and S. Turitsyn, “Nonlinear solitary waves with Gaussian tails”, Physica D. Vol. 128 (1999), 273–295. Zbl0935.35152
  19. M. K. Kwong, “Uniqueness of positive solutions of Δ u - u + u p = 0 in n ”, Arch. Rational Mech. Anal. Vol. 105 (1989), 234–266. Zbl0676.35032
  20. Y. Li and W. N. Ni, “Radial symmetry of positive solutions nonlinear elliptic equations in n ”, Commun. Partial Differential. Eqs. Vol. 18 (1993), 1043–1054. Zbl0788.35042
  21. Y. G. Oh, “Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials”, Commun. Math. Phys. Vol. 121 (1989), 11–33. Zbl0693.35132
  22. Y. G. Oh, “Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equtions with potentials”, J. Differential Eqs. Vol. 81 (1989), 255–274. Zbl0703.35158
  23. H. A. Rose and M. I. Weinstein, “On the bound states of the nonlinear Schrödinger equation with a linear potential”, Phyica D. Vol. 30 (1988), 207–218. Zbl0694.35202
  24. J. Shatah, “Stable standing waves of nonlinear Klein-Gordon equations”, Commun. Math. Phys. Vol. 91 (1983), 313–327. Zbl0539.35067
  25. J. Shatah and W. Strauss, “Instability of nonlinear bound states”, Commun. Math. Phys. Vol. 100 (1985), 173–190. Zbl0603.35007
  26. C. Sulem and P.-L. Sulem, “The nonlinear Schrödinger equation. Self-focusing and wave collapse,” Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. Zbl0928.35157
  27. M. Wadati and T. Tsurumi, “Collapses of wavefunctions in multi-dimensional nonlinear Schrödinger equations under harmonic potential”, J. Phys. Soc. Japan. Vol. 66 (1997), 3031–3034. Zbl0973.76623
  28. M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys. Vol. 87 (1983), 567–576. Zbl0527.35023
  29. V. E. Zakharov, “Collapse of langmuir waves”, Sov. Phys. JETP Vol. 35 (1972), 908–912. 
  30. J. Zhang, “Stability of standing waves for the nonlinear Schrödinger equations with unbounded potentials”, Z. Angew. Math. Phys. Vol. 51 (2000), 489–503. Zbl0985.35085
  31. J. Zhang, “Stability of Attractive Bose-Einstein Condensates”, Journal of Statistical Physics. Vol. 101 (2000), 731–745. Zbl0989.82024
  32. J. Zhang, “Sharp criteria for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential”, (1999), Preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.