Stability of standing waves for nonlinear Schrödinger equations with potentials
Séminaire Équations aux dérivées partielles (2003-2004)
- page 1-8
Access Full Article
topHow to cite
topFukuizumi, Reika. "Stability of standing waves for nonlinear Schrödinger equations with potentials." Séminaire Équations aux dérivées partielles (2003-2004): 1-8. <http://eudml.org/doc/11098>.
@article{Fukuizumi2003-2004,
author = {Fukuizumi, Reika},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equation; waves; Bose-Einstein condensate},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stability of standing waves for nonlinear Schrödinger equations with potentials},
url = {http://eudml.org/doc/11098},
year = {2003-2004},
}
TY - JOUR
AU - Fukuizumi, Reika
TI - Stability of standing waves for nonlinear Schrödinger equations with potentials
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 8
LA - eng
KW - nonlinear Schrödinger equation; waves; Bose-Einstein condensate
UR - http://eudml.org/doc/11098
ER -
References
top- G. Baym and C. J. Pethick, “Ground-state properties of magnetically trapped Bose-condensed rubidium gas”, Phys. Rev. Lett. Vol. 76 (1996), 6–9.
- H. Berestycki and T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires”, C. R. Acad. Sci. Paris. Vol. 293 (1981), 489–492. Zbl0492.35010
- T. Cazenave, “An introduction to nonlinear Schrödinger equations,” Textos de Métods Matemáticos 26, IM-UFRJ, Rio de Janeiro, 1993.
- T. Cazenave and P. L. Lions, “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Commun. Math. Phys. Vol. 85 (1982), 549–561. Zbl0513.35007
- R. Y. Chiao, E. Garmine and C. H. Townes, “Self-trapping of optical beams”, Phys. Rev. Lett. Vol. 13 (1964), 479–482.
- C. Cid and P. Felmer, “Orbital stability of standing waves for the nonlinear Schrödinger equation with potential”, Rev. Math. Phys. Vol. 13 (2001), 1529–1546. Zbl1038.35112
- G. Fibich and X. P. Wang, “Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities”, Physica D. Vol. 175 (2003), 96–108. Zbl1098.74614
- R. Fukuizumi, “Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential”, Discrete Contin. Dynam. Systems. Vol. 7 (2001), 525–544. Zbl0992.35094
- R. Fukuizumi and M. Ohta, “Instability of standing waves for nonlinear Schrödinger equations with potentials”, Differential and Integral Eqs. Vol. 16 (2003), 691–706. Zbl1031.35132
- R. Fukuizumi and M. Ohta, “Stability of standing waves for nonlinear Schrödinger equations with potentials”, Differential and Integral Eqs. Vol. 16 (2003), 111–128. Zbl1031.35131
- R. Fukuizumi, “Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials,” Preprint. Zbl1107.35100
- A. Griffin, D. W. Snoke and S. Stringari, “Bose-Einstein condensation,” Cambridge University Press, Cambridge, 1995.
- M. Grillakis, J. Shatah and W. Strauss, “Stability theory of solitary waves in the presence of symmetry I”, J. Funct. Anal. Vol. 74 (1987), 160–197. Zbl0656.35122
- M. Grillakis, J. Shatah and W. Strauss, “Stability theory of solitary waves in the presence of symmetry II”, J. Funct. Anal. Vol. 94 (1990), 308–348. Zbl0711.58013
- M. Hirose and M. Ohta, “Structure of positive radial solutions to scalar field equations with harmonic potential”, J. Differential Eqs. Vol. 178 (2002), 519–540. Zbl1011.34039
- M. Hirose and M. Ohta, “Uniqueness of positive solutions to scalar field equations with harmonic potential”, Preprint. Zbl1160.34014
- Y. Kabeya and K. Tanaka, “Uniqueness of positive radial solutions of semilinear elliptic equations in and Séré’s non-degeneracy condition”, Commun. Partial. Differential. Eqs. Vol. 24 (1999), 563–598. Zbl0930.35064
- M. Kunze, T. Küpper, V. K. Mezentsev, E. G. Shapiro and S. Turitsyn, “Nonlinear solitary waves with Gaussian tails”, Physica D. Vol. 128 (1999), 273–295. Zbl0935.35152
- M. K. Kwong, “Uniqueness of positive solutions of in ”, Arch. Rational Mech. Anal. Vol. 105 (1989), 234–266. Zbl0676.35032
- Y. Li and W. N. Ni, “Radial symmetry of positive solutions nonlinear elliptic equations in ”, Commun. Partial Differential. Eqs. Vol. 18 (1993), 1043–1054. Zbl0788.35042
- Y. G. Oh, “Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials”, Commun. Math. Phys. Vol. 121 (1989), 11–33. Zbl0693.35132
- Y. G. Oh, “Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equtions with potentials”, J. Differential Eqs. Vol. 81 (1989), 255–274. Zbl0703.35158
- H. A. Rose and M. I. Weinstein, “On the bound states of the nonlinear Schrödinger equation with a linear potential”, Phyica D. Vol. 30 (1988), 207–218. Zbl0694.35202
- J. Shatah, “Stable standing waves of nonlinear Klein-Gordon equations”, Commun. Math. Phys. Vol. 91 (1983), 313–327. Zbl0539.35067
- J. Shatah and W. Strauss, “Instability of nonlinear bound states”, Commun. Math. Phys. Vol. 100 (1985), 173–190. Zbl0603.35007
- C. Sulem and P.-L. Sulem, “The nonlinear Schrödinger equation. Self-focusing and wave collapse,” Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. Zbl0928.35157
- M. Wadati and T. Tsurumi, “Collapses of wavefunctions in multi-dimensional nonlinear Schrödinger equations under harmonic potential”, J. Phys. Soc. Japan. Vol. 66 (1997), 3031–3034. Zbl0973.76623
- M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys. Vol. 87 (1983), 567–576. Zbl0527.35023
- V. E. Zakharov, “Collapse of langmuir waves”, Sov. Phys. JETP Vol. 35 (1972), 908–912.
- J. Zhang, “Stability of standing waves for the nonlinear Schrödinger equations with unbounded potentials”, Z. Angew. Math. Phys. Vol. 51 (2000), 489–503. Zbl0985.35085
- J. Zhang, “Stability of Attractive Bose-Einstein Condensates”, Journal of Statistical Physics. Vol. 101 (2000), 731–745. Zbl0989.82024
- J. Zhang, “Sharp criteria for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential”, (1999), Preprint.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.