Nonlinear Schrödinger equation with a point defect

Reika Fukuizumi; Masahito Ohta; Tohru Ozawa

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 5, page 837-845
  • ISSN: 0294-1449

How to cite

top

Fukuizumi, Reika, Ohta, Masahito, and Ozawa, Tohru. "Nonlinear Schrödinger equation with a point defect." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 837-845. <http://eudml.org/doc/78815>.

@article{Fukuizumi2008,
author = {Fukuizumi, Reika, Ohta, Masahito, Ozawa, Tohru},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; attractive delta-function impurity; standing wave; orbital stability},
language = {eng},
number = {5},
pages = {837-845},
publisher = {Elsevier},
title = {Nonlinear Schrödinger equation with a point defect},
url = {http://eudml.org/doc/78815},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Fukuizumi, Reika
AU - Ohta, Masahito
AU - Ozawa, Tohru
TI - Nonlinear Schrödinger equation with a point defect
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 837
EP - 845
LA - eng
KW - nonlinear Schrödinger equations; attractive delta-function impurity; standing wave; orbital stability
UR - http://eudml.org/doc/78815
ER -

References

top
  1. [1] Albeverio S., Gesztesy F., Hëgh-Krohn R., Holden H., Solvable Models in Quantum Mechanics, Springer-Verlag, New York, 1988. Zbl0679.46057MR926273
  2. [2] Berestycki H., Cazenave T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris.293 (1981) 489-492. Zbl0492.35010MR646873
  3. [3] Brézis H., Lieb E.H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983) 486-490. Zbl0526.46037MR699419
  4. [4] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. Zbl1055.35003MR2002047
  5. [5] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
  6. [6] Cid C., Felmer P., Orbital stability of standing waves for the nonlinear Schrödinger equation with potential, Rev. Math. Phys.13 (2001) 1529-1546. Zbl1038.35112MR1869816
  7. [7] Comech A., Pelinovsky D., Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math.56 (2003) 1565-1607. Zbl1072.35165MR1995870
  8. [8] de Bouard A., Fukuizumi R., Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré6 (2005) 1157-1177. Zbl1085.35123MR2189380
  9. [9] Fibich G., Wang X.P., Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica D175 (2003) 96-108. Zbl1098.74614MR1957907
  10. [10] Fukuizumi R., Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations10 (2005) 259-276. Zbl1107.35100MR2123132
  11. [11] Fukuizumi R., Ohta M., Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations16 (2003) 691-706. Zbl1031.35131MR1973275
  12. [12] Fukuizumi R., Ohta M., Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations16 (2003) 111-128. Zbl1031.35132MR1948875
  13. [13] Goodman R.H., Holmes P.J., Weinstein M.I., Strong NLS soliton-defect interactions, Physica D192 (2004) 215-248. Zbl1061.35132MR2065079
  14. [14] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
  15. [15] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
  16. [16] Kabeya Y., Tanaka K., Uniqueness of positive radial solutions of semilinear elliptic equations in R n and Séré’s non-degeneracy condition, Comm. Partial Differential Equations24 (1999) 563-598. Zbl0930.35064MR1683050
  17. [17] J. Holmer, J. Marzuola, M. Zworski, Fast soliton scattering by delta impurities, Preprint. Zbl1126.35068MR2318852
  18. [18] Kunze M., Küpper T., Mezentsev V.K., Shapiro E.G., Turitsyn S., Nonlinear solitary waves with Gaussian tails, Physica D128 (1999) 273-295. Zbl0935.35152MR1688261
  19. [19] Lieb E.H., Loss M., Analysis, second ed., American Mathematical Society, 2001. Zbl0966.26002MR1817225
  20. [20] Oh Y.G., Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, Commun. Math. Phys.121 (1989) 11-33. Zbl0693.35132MR985612
  21. [21] Ohta M., Stability and instability of standing waves for one dimensional nonlinear Schrödinger equations with double power nonlinearity, Kodai Math. J.18 (1995) 68-74. Zbl0868.35111MR1317007
  22. [22] Rose H.A., Weinstein M.I., On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D30 (1988) 207-218. Zbl0694.35202MR939275
  23. [23] Shatah J., Stable standing waves of nonlinear Klein–Gordon equations, Commun. Math. Phys.91 (1983) 313-327. Zbl0539.35067MR723756
  24. [24] Shatah J., Strauss W., Instability of nonlinear bound states, Commun. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
  25. [25] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
  26. [26] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044
  27. [27] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
  28. [28] Zhang J., Stability of standing waves for the nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys.51 (2000) 489-503. Zbl0985.35085MR1762704
  29. [29] Zhang J., Stability of attractive Bose–Einstein condensates, J. Statist. Phys.101 (2000) 731-745. Zbl0989.82024MR1804895

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.