Stabilité des chocs pour la MHD

Guy Métivier[1]

  • [1] MAB Université de Bordeaux I, 33405 Talence Cedex , France ; metivier@math.u-bordeaux.fr

Séminaire Équations aux dérivées partielles (2004-2005)

  • page 1-19

How to cite

top

Métivier, Guy. "Stabilité des chocs pour la MHD." Séminaire Équations aux dérivées partielles (2004-2005): 1-19. <http://eudml.org/doc/11099>.

@article{Métivier2004-2005,
affiliation = {MAB Université de Bordeaux I, 33405 Talence Cedex , France ; metivier@math.u-bordeaux.fr},
author = {Métivier, Guy},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stabilité des chocs pour la MHD},
url = {http://eudml.org/doc/11099},
year = {2004-2005},
}

TY - JOUR
AU - Métivier, Guy
TI - Stabilité des chocs pour la MHD
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 19
LA - fre
UR - http://eudml.org/doc/11099
ER -

References

top
  1. S.Bianchini, A.Bressan, Vanishing viscosity limit solutions to nonlinear hyperbolic systems, Ann. of Maths., à paraître. Zbl1082.35095
  2. A.M. Blokhin, Strong discontinuities in magnetohydrodynamics. Translated by A. V. Zakharov. Nova Science Publishers, Inc., Commack, NY, 1994. x+150 pp. Zbl0920.76001MR1406089
  3. A. Blokhin and Y. Trakhinin, Stability of strong discontinuities in fluids and MHD. in Handbook of mathematical fluid dynamics, Vol. I, 545–652, North-Holland, Amsterdam, 2002. Zbl1231.76344MR1942469
  4. A.M. Blokhin and Y. Trakhinin, Stability of fast parallel MHD shock waves in polytropic gas. Eur. J. Mech. B Fluids 18 (1999), 197–211. Zbl0940.76019MR1681896
  5. A.M. Blokhin and Y. Trakhinin, Stability of fast parallel and transversal MHD shock waves in plasma with pressure anisotropy. Acta Mech. 135 (1999), 57–71. Zbl0930.76033MR1683806
  6. A.M. Blokhin and Y. Trakhinin, Hyperbolic initial-boundary value problems on the stability of strong discontinuities in continuum mechanics. Hyperbolic problems : theory, numerics, applications, Vol. I (Zürich, 1998), 77–86, Internat. Ser. Numer. Math., 129, Birkhäuser, Basel, 1999. Zbl0933.35138MR1715735
  7. A.M. Blokhin, Y. Trakhinin, and I.Z. Merazhov, On the stability of shock waves in a continuum with bulk charge. (Russian) Prikl. Mekh. Tekhn. Fiz. 39 (1998) 29–39 ; translation in J. Appl. Mech. Tech. Phys. 39 (1998) 184–193. Zbl0921.76195MR1663879
  8. A.M. Blokhin, Y. Trakhinin, and I.Z. Merazhov, Investigation on stability of electrohydrodynamic shock waves. Matematiche (Catania) 52 (1997) 87–114. Zbl0907.76033MR1624964
  9. J. Chazarain-A. Piriou, Introduction to the theory of linear partial differential equations, Translated from the French. Studies in Mathematics and its Applications, 14. North-Holland Publishing Co., Amsterdam-New York, 1982. xiv+559 pp. Zbl0487.35002MR678605
  10. H. Freistühler and P. Szmolyan, Spectral stability of small shock waves. Arch. Ration. Mech. Anal. 164 (2002) 287–309. Zbl1018.35010MR1933630
  11. K.O. Friedrichs, Symmetric hyperbolic linear differential equations. Comm. Pure and Appl. Math. 7 (1954) 345–392. Zbl0059.08902MR62932
  12. K.O. Friedrichs, On the laws of relativistic electro-magneto-fluid dynamics. Comm. Pure and Appl. Math. 27 (1974) 749–808. Zbl0308.76075MR375928
  13. K.O. Friedrichs, P. Lax, Systems of conservation equations with a convex extension. Proc. nat. Acad. Sci. USA 68 (1971) 1686–1688. Zbl0229.35061MR285799
  14. C.S. Gardner, M.D. Kruskal, Stability of plane magnetohydrodynamic shocks. Phys. Fluids 7 (1964) 700–706. Zbl0121.21107MR170581
  15. R. Gardner, K.Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure and Appl. Math., 51 (1998), 797–855. Zbl0933.35136MR1617251
  16. J.Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch.Rat.Mech.Anal., 95 (1986), pp 325–344. Zbl0631.35058MR853782
  17. O. Gues, G. Métivier, M. Williams, K. Zumbrun, Multidimensional viscous shocks I : degenerate symmetrizers and long time stability. J. A.M.S., à paraître. Zbl1058.35163
  18. O. Gues, G. Métivier, M. Williams, K. Zumbrun, Multidimensional viscous shocks II : the small viscosity limit., Comm. Pure and Appl. Math., 57 (2004) 141–218. Zbl1073.35162MR2012648
  19. O. Gues, G. Métivier, M. Williams, K. Zumbrun, A new approach to stability of multidimensional viscous shocks, Arch. Rat.Mech. Anal., à paraître. Zbl1058.35163
  20. O. Gues, G. Métivier, M. Williams, K. Zumbrun, Navier–Stokes regularization of multidimensional Euler shocks, en préparation. Zbl1173.35082
  21. O. Gues, G. Métivier, M. Williams, K. Zumbrun, Viscous Boundary Value Problems for Symmetric Systems with Variable Multiplicities, en préparation. Zbl1138.35052
  22. Guès, O., Williams, M., Curved shocks as viscous limits : a boundary problem appraoch, Indiana Univ.Math.J., 51 (2002) 421–450. Zbl1046.35072MR1909296
  23. J.Humphrey, K.Zumbrun, Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems, Z.Angew.Math.Phys., 53 (2002), pp 20–34. Zbl1006.35065MR1889177
  24. H.O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970) 277-298. Zbl0193.06902MR437941
  25. P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBSM-NSF Regional Conf. Ser. in Appl. Math., 11, SIAM , Philadelphia (1973). Zbl0268.35062MR350216
  26. A. Majda, The stability of multi-dimensional shock fronts . Mem. Amer. Math. Soc. 275 (1983). Zbl0506.76075MR683422
  27. A. Majda, The esistence of multi-dimensional shock fronts . Mem. Amer. Math. Soc. 281 (1983). Zbl0517.76068
  28. A. Majda, S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975) 607-676. Zbl0314.35061MR410107
  29. C. Mascia, K. Zumbrun, Stability of small-amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Comm. Pure and Appl.Math., 57 (2004) 141–218. Zbl1060.35111MR2044067
  30. C. Mascia, K. Zumbrun, Stability of large-amplitude shock profiles of hyperbolic–parabolic systems. Arch. Rational Mech. Anal., 172 (2004) 93–131. Zbl1058.35160MR2048568
  31. G. Métivier, Stability of multidimensional weak shocks, Comm., Partial Diff. Eq., 15 (1990), 983-1028. Zbl0711.35078MR1070236
  32. G. Métivier, Stability of multidimensional shocks. Advances in the theory of shock waves, 25–103, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001. Zbl1017.35075MR1842775
  33. G.Métivier. The Block Structure Condition for Symmetric Hyperbolic Problems, Bull. London Math.Soc., 32 (2000), 689–702 Zbl1073.35525MR1781581
  34. G.Métivier, K.Zumbrun, Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems, Memoirs of the AMS, ˆ para”tre. Zbl1074.35066
  35. G.Métivier, K.Zumbrun, Symmetrizers and continuity of stable subspaces for parabolic–hyperbolic boundary value problems, J. Discrete. Cont. Dyn. Systems, 11 (2004) 205–220. Zbl1102.35332MR2073953
  36. G.Métivier, K.Zumbrun, Hyperbolic Boundary Value Problems for Symmetric Systems with Variable Multiplicities, J.Diff. Eq., ˆ para”tre. Zbl1073.35155
  37. R. Plaza, K. Zumbrun, An Evans function approach to spectral stability of small-amplitude viscous shock profiles, Discrete and Cont. Dyn. Syst. Ser B, 10 (2004) 885–924. Zbl1058.35164MR2073940
  38. J.V. Ralston, Note on a paper of Kreiss, Comm. Pure Appl. Math. 24 (1971) 759–762. Zbl0215.16802MR606239
  39. J.Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer.Math.Soc, 291 (1985), 167–185. Zbl0549.35099MR797053
  40. R. Sakamoto, Mixed problems for hpyerbolic equations, I, II, J. Math. Kyoto Univ. 10 (1970), 349-373 and 403-417. Zbl0203.10001
  41. R. Sakamoto, Hyperbolic boundary value problems, Cambridge U. P., 1982. Zbl0494.35002MR666700
  42. K. Zumbrun, Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves, 307–516, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001. Zbl0989.35089MR1842778
  43. K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier–Stokes equations. For Handbook of Fluid Mechanics III, S.Friedlander, D.Serre ed., Elsevier North Holland 2004. Zbl1222.35156MR2099037
  44. K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity. Lecture notes for CIME summer school at Cetraro, 2003, preprint. MR2348937
  45. K.Zumbrun, P.Howard, Pointwide semigroup methods and stability of viscous shock waves, Indiana J.Math., 47 (1998), 741-871, and Indiana J.Math, 51 2002, 1017-1021. Zbl0928.35018MR1665788

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.