On the blowup theory for the critical nonlinear Schrödinger equations

Sahbi Keraani[1]

  • [1] IRMAR, Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex France

Séminaire Équations aux dérivées partielles (2004-2005)

  • Volume: 2004-2005, page 1-8

How to cite

top

Keraani, Sahbi. "On the blowup theory for the critical nonlinear Schrödinger equations." Séminaire Équations aux dérivées partielles 2004-2005 (2004-2005): 1-8. <http://eudml.org/doc/11111>.

@article{Keraani2004-2005,
affiliation = {IRMAR, Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex France},
author = {Keraani, Sahbi},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the blowup theory for the critical nonlinear Schrödinger equations},
url = {http://eudml.org/doc/11111},
volume = {2004-2005},
year = {2004-2005},
}

TY - JOUR
AU - Keraani, Sahbi
TI - On the blowup theory for the critical nonlinear Schrödinger equations
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2004-2005
SP - 1
EP - 8
LA - eng
UR - http://eudml.org/doc/11111
ER -

References

top
  1. H. Bahouri and P. Gérard: High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), no. 1, 131–175. Zbl0919.35089MR1705001
  2. V. Banica: Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 1, 139–170. Zbl1170.35528MR2064970
  3. T.  Cazenave: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. Zbl1055.35003MR2002047
  4. P.  Gérard: Description du défaut de compacité de l’injection de Sobolev, ESAIM.COCV, Vol 3, (1998) 213-233. Zbl0907.46027
  5. J.  Ginibre, G.  Velo: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1–32. Zbl0396.35028MR533218
  6. R.T. Glassey : On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794–1797. Zbl0372.35009MR460850
  7. S. Keraani: On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), no. 2, 353–392. Zbl1038.35119MR1855973
  8. M.K.  Kwong: uniqueness of positive solutions to Δ u - u + u p = 0 , in n , Arch. Rat. Mech. Anal 105 (1989), n. 3, 243-266. Zbl0676.35032MR969899
  9. P-L. Lions: The concentration-compactness principle in the calculus of variations. The compact case. Part 1, Ann. Inst. Henri Poincaré, Analyse non linéaire 1 (1984), 109-145. MR778970
  10. F.  Merle: Determination of blowup solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69, (1993),no. 2, 203-254. Zbl0808.35141MR1203233
  11. —: Construction of solutions with exactly k blowup points for nonlinear Schrödinger equations with critical nonlinearity, Comm.Math. Phys. 129 (1990), no.2, 223-240. Zbl0707.35021MR1048692
  12. —: Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations. Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998). Doc. Math. 1998, Extra Vol. III, 57–66 Zbl0896.35123MR1648140
  13. F.  Merle, Y.  Tsutsumi: L 2 concentration of blowup solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations 84 (1990), no. 2, 205–214. Zbl0722.35047MR1047566
  14. C.  Sulem, P-L.  Sulem: The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
  15. Y.  Tsutsumi: Rate of L 2 concentration of blowup solutions for the nonlinear Schr̦dinger equation with critical power, Nonlinear Anal. 15 (1990), no. 8, 719–724. Zbl0726.35124MR1074950
  16. M. I.  Weinstein: Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Physi. 87 (1983), 567-567. Zbl0527.35023MR691044
  17. —: On the structure of singularities in solutions to the nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1984), 545-565. Zbl0596.35022
  18. —: The nonlinear Schrödinger equation—singularity formation, stability and dispersion. The connection between infinite-dimensional and finite-dimensional dynamical systems, Contemp. Math., 99, Amer. Math. Soc., Providence, RI, 1989, 213–232. Zbl0703.35159MR1034501

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.