Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
- [1] Dipartimento di Matematica Università di Pisa Via F. Buonarroti 2 56127 Pisa, Italy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 1, page 139-170
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBanica, Valeria. "Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 139-170. <http://eudml.org/doc/84523>.
@article{Banica2004,
abstract = {In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than $(T-t)^\{-1\}$, the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.},
affiliation = {Dipartimento di Matematica Università di Pisa Via F. Buonarroti 2 56127 Pisa, Italy},
author = {Banica, Valeria},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {139-170},
publisher = {Scuola Normale Superiore, Pisa},
title = {Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain},
url = {http://eudml.org/doc/84523},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Banica, Valeria
TI - Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 139
EP - 170
AB - In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than $(T-t)^{-1}$, the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.
LA - eng
UR - http://eudml.org/doc/84523
ER -
References
top- [1] C. Antonini, Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations 15 (2002), 749-768. Zbl1016.35018MR1893845
- [2] H. Brézis – T. Gallouët, Nonlinear Schrödinger evolution equation, Nonlinear Anal. 4 (1980), 677-681. Zbl0451.35023
- [3] N. Burq – P. Gérard, N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. Zbl1044.35084MR1978490
- [4] T. Cazenave, “An introduction to nonlinear Schrödinger equations”, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, 1996.
- [5] T. Cazenave – F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in , Manuscripta Math. 61 (1988), 477-494. Zbl0696.35153MR952091
- [6] T. Cazenave – F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, In: “Nonlinear semigroups, partial differential equations and attractors” (Washington, 1987), Lecture Notes in Math., 1394, Springer, Berlin, 1989, pp 18-29. Zbl0694.35170MR1021011
- [7] I. Gallagher – P. Gérard, Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. 80 (2001), 1-49. Zbl0980.35088MR1810508
- [8] J. Ginibre – G. Velo, On a class of Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 1-71. Zbl0396.35028MR533219
- [9] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797. Zbl0372.35009MR460850
- [10] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré - Physique Théorique 46 (1987), 113-129. Zbl0632.35038MR877998
- [11] O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), 193-203. Zbl0638.35043MR869407
- [12] M. K. Kwong, Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal. 105 (1989), 243-266. Zbl0676.35032MR969899
- [13] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré - Anal. Non Linéaire 1 (1984), 109-145. Zbl0541.49009MR778970
- [14] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré - Anal. Non Linéaire 1 (1984), 223-283. Zbl0704.49004MR778974
- [15] M. Marcus – V. J. Mizel, Nemytskij operators in Sobolev spaces, Arch. Ration. Mech. Anal. 51 (1973), 347-370. Zbl0266.46029MR348480
- [16] M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. Zbl1040.35116MR1952162
- [17] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), 427-454. Zbl0808.35141MR1203233
- [18] F. Merle, Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré - Anal. Non Linéaire 13 (1996), 553-565. Zbl0862.35013MR1409662
- [19] F. Merle – P. Raphaël, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. Zbl1061.35135MR1995801
- [20] F. Merle – P. Raphaël, On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).
- [21] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) (1959), 115-162. Zbl0088.07601MR109940
- [22] T. Ogawa – T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), 531-540. Zbl0733.35095MR1097298
- [23] T. Ogawa – Y. Tsutsumi, Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. Zbl0717.35010MR1084613
- [24] M. Reed – B. Simon, “Methods of modern mathematical Physics IV : Analysis of Operators”, Academic Press, New York, 1978. Zbl0401.47001MR493421
- [25] C. Sulem – P. L. Sulem, “The nonlinear Schrödinger equation. Self-focusing and wave collapse”, Applied Math. Sciences, 139, Springer-Verlag, New York, 1992. Zbl0928.35157
- [26] M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), 780-783. Zbl0585.35019MR745511
- [27] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), 567-576. Zbl0527.35023MR691044
- [28] M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations 11 (1986), 545-565. Zbl0596.35022MR829596
- [29] M. I. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491. Zbl0583.35028MR783974
- [30] V. E. Zakharov, Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.