Construction de champs quantiques relativistes à température positive

Christian Gérard[1]

  • [1] Université Paris Sud XI, F-91405 Orsay, France

Séminaire Équations aux dérivées partielles (2004-2005)

  • page 1-18

How to cite

top

Gérard, Christian. "Construction de champs quantiques relativistes à température positive." Séminaire Équations aux dérivées partielles (2004-2005): 1-18. <http://eudml.org/doc/11114>.

@article{Gérard2004-2005,
affiliation = {Université Paris Sud XI, F-91405 Orsay, France},
author = {Gérard, Christian},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-18},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Construction de champs quantiques relativistes à température positive},
url = {http://eudml.org/doc/11114},
year = {2004-2005},
}

TY - JOUR
AU - Gérard, Christian
TI - Construction de champs quantiques relativistes à température positive
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 18
LA - fre
UR - http://eudml.org/doc/11114
ER -

References

top
  1. O. Bratteli and D.W. Robinson : Operator Algebras and Quantum Statistical Mechanics Vol. I,II, Springer-Verlag, New York-Heidelberg-Berlin(1981) Zbl0463.46052MR611508
  2. H. Araki : Positive cone, Radon-Nikodym theorems, relative Hamiltonian and the Gibbs condition in statistical mechanics. An application of Tomita-Takesaki theory, in C * -algebras and their applications to Statistical Mechanics and Quantum Field Theory, D. Kastler Ed., North Holland (1976). Zbl0392.46043MR675642
  3. J. Fröhlich : Unbounded, symmetric semigroups on a separable Hilbert space are essentially selfadjoint. Adv. in Appl. Math. 1 (1980) 237–256. Zbl0452.47043MR603131
  4. J. Fröhlich : The reconstruction of quantum fields from Euclidean Green’s functions at arbitrary temperatures, Helv. Phys. Acta 48 (1975) 355–363. 
  5. C. Gérard, C. Jäkel : Thermal quantum fields with spatially cut-off interactions in 1+1 space-time dimensions, à paraitre dans Journal of Funct. Anal. 2004. Zbl1071.81080MR2114702
  6. C. Gérard, C. Jäkel : Thermal Quantum Fields without Cut-offs in 1+1 Space-time Dimensions, preprint 2003. Zbl1078.81055MR2133630
  7. I.M. Gelfand, N.J. Vilenkin : Generalized functions. Vol. 4 : Applications of harmonic analysis, Academic Press (1964). Zbl0136.11201MR173945
  8. J. Glimm, A. Jaffe : Quantum Physics, A functional integral point of view, Springer (1987). Zbl0461.46051MR887102
  9. J. Glimm, A. Jaffe : The λ ϕ 2 4 quantum field theory without cutoffs. II. The field operators and the approximate vacuum, Ann. of Math. 91 (1970) 362–401. Zbl0191.27005MR256677
  10. R. Høegh-Krohn : Relativistic quantum statistical mechanics in two-dimensional space-time, Comm. Math. Phys. 38 (1974) 195–224. MR366313
  11. A. Klein : The semigroup characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Funct. Anal. 27 (1978) 277–291. Zbl0382.46030MR496172
  12. A. Klein, L. Landau : Stochastic processes associated with KMS states, J. Funct. Anal. 42 (1981) 368–428. Zbl0498.60098MR626451
  13. A. Klein, L. Landau : Construction of a unique selfadjoint generator for a symmetric local semigroup, Zbl0473.47023
  14. M. Le Bellac : Thermal Field Theory, Cambridge Univ Press (2000). MR1446710
  15. B. Simon : The P ( ϕ ) 2 Euclidean (Quantum) Field Theory, Princeton University Press (1974). Zbl1175.81146MR489552
  16. M. Takesaki, M. Winnink : Local normality in quantum statistical mechanics, Comm. Math. Phys. 30 (1973) 129–152. MR398385
  17. H. Umezawa : Advanced Field Theory : Micro, Macro, And Thermal Physics Springer (1993). 

NotesEmbed ?

top

You must be logged in to post comments.