Sur la dynamique explosive des solutions de l’équation de Schrödinger non linéaire
- [1] Université de Paris Sud et CNRS
Séminaire Équations aux dérivées partielles (2004-2005)
- page 1-11
Access Full Article
topHow to cite
topRaphaël, Pierre. "Sur la dynamique explosive des solutions de l’équation de Schrödinger non linéaire." Séminaire Équations aux dérivées partielles (2004-2005): 1-11. <http://eudml.org/doc/11115>.
@article{Raphaël2004-2005,
affiliation = {Université de Paris Sud et CNRS},
author = {Raphaël, Pierre},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur la dynamique explosive des solutions de l’équation de Schrödinger non linéaire},
url = {http://eudml.org/doc/11115},
year = {2004-2005},
}
TY - JOUR
AU - Raphaël, Pierre
TI - Sur la dynamique explosive des solutions de l’équation de Schrödinger non linéaire
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 11
LA - fre
UR - http://eudml.org/doc/11115
ER -
References
top- Berestycki, H. ; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. Zbl0533.35029MR695535
- Bourgain, J. ; Wang, W., Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197–215 (1998). Zbl1043.35137MR1655515
- Ginibre, J. ; Velo, G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32 (1979), no. 1, 1–32. Zbl0396.35028MR533218
- Glassey, R.T., On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18, 1794-1797 (1977). Zbl0372.35009MR460850
- Glangetas, L. ; Merle, F., Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. Comm. Math. Phys. 160 (1994), no. 1, 173–215. Zbl0808.35137MR1262194
- Kwong, M. K., Uniqueness of positive solutions of in . Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. Zbl0676.35032MR969899
- Landman, M. J. ; Papanicolaou, G. C. ; Sulem, C. ; Sulem, P.-L., Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) 38 (1988), no. 8, 3837–3843. MR966356
- Martel, Y. ; Merle, F., Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. (2) 155 (2002), no. 1, 235–280. Zbl1005.35081MR1888800
- Merle, F., Construction of solutions with exactly blow up points for the Schrödinger equation with critical nonlinearity, J. Diff. Eq. 84 (1990), no. 2, 223-240. Zbl0707.35021MR1048692
- Merle, F., Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69 (1993), no. 2, 427–454. Zbl0808.35141MR1203233
- Merle, F., Lower bounds for the blow up rate of solutions of the Zakharov equations in dimension two, Comm. Pure. Appl. Math. 49 (1996), n0. 8, 765-794. Zbl0856.35014MR1391755
- Merle, F. ; Raphaël, P., Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, to appear in Annals of Math. Zbl1185.35263MR1968208
- Merle, F. ; Raphaël, P., Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct .Ana 13 (2003), 591–642. Zbl1061.35135MR1995801
- Merle, F. ; Raphaël, P., On Universality of Blow up Profile for critical nonlinear Schrödinger equation, Invent. Math. 156, 565-672 (2004). Zbl1067.35110MR2061329
- Merle, F. ; Raphaël, P., Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, preprint. Zbl1075.35077
- Merle, F. ; Raphaël, P., Profiles and quantization of the blow up mass for critical non linear Schrödinger equation, to appear in Comm. Math. Phys. Zbl1062.35137MR2116733
- Perelman, G., On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D, Ann. Henri. Poincaré, 2 (2001), 605-673. Zbl1007.35087MR1826598
- Raphaël, P., Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, to appear in Math. Annalen. Zbl1082.35143
- Sulem, C. ; Sulem, P.L., The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
- Weinstein, M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567—576. Zbl0527.35023MR691044
- Zakharov, V.E. ; Shabat, A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62—69. MR406174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.