Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 1-2, page 197-215
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBourgain, Jean, and Wang, W.. "Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 197-215. <http://eudml.org/doc/84284>.
@article{Bourgain1997,
author = {Bourgain, Jean, Wang, W.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {behavior of the blowup solution; nonlinear Schrödinger equation},
language = {eng},
number = {1-2},
pages = {197-215},
publisher = {Scuola normale superiore},
title = {Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity},
url = {http://eudml.org/doc/84284},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Bourgain, Jean
AU - Wang, W.
TI - Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 197
EP - 215
LA - eng
KW - behavior of the blowup solution; nonlinear Schrödinger equation
UR - http://eudml.org/doc/84284
ER -
References
top- [Bo] J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, International Math. Res. Notices6 (1996), 277-304. Zbl0934.35166MR1386079
- [G] R. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger operators, J. Math. Phys.8 (1977), 1794-1797. Zbl0372.35009MR460850
- [GV] J. Ginibre - G. Velo, On a class of nonlinear Schrödinger equations I. The Cauchy problem, general case; II. Scattering theory, general case, J. Func. Anal.32 (1979), 1-71. Zbl0396.35028MR533218
- [Ka] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Physique Theorique46 (1987), 113-129. Zbl0632.35038MR877998
- [Kw] M. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in RN, Arch. Rat. Mech. Anal.105 (1989), 243-266. Zbl0676.35032
- [M1] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J.69 (1993), 427-453. Zbl0808.35141MR1203233
- [M2] F. Merle, Construction of solutions with exact k blow-up points for the Schrödinger equation with critical power nonlinearity, Comm. Math. Phys.149 (1992), 205-214. MR1048692
- [M3] F. Merle, Limit of the solution of a nonlinear Schrödinger equation at blow-up time, J. Functional Anal.84 (1989), 201-214. Zbl0681.35078MR999497
- [MT] F. Merle - Y. Tsutsumi, L2 concentration of blow-up solutions for the nonlinear Schrödingerequation with critical power nonlinearity, J. Diff. Eq.84 (1990), 205-214. Zbl0722.35047MR1047566
- [N] H. Nawa, Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity, J. Math. Soc. Japan46 (1994), 557-586. Zbl0829.35121MR1291107
- [SSP] P.L. Sulem - C. Sulem - A. Patera, Numerical simulations ofsingular solutions to the two-dimensional cubic Schrödinger equation, J. Comp. Phus.37 (1984), 755-778. Zbl0543.65081MR762872
- [Wein] M. Weinstein, On the structure and formation of singularities in solutions to the nonlinear dispersive evolution equation, Comm. PDE11 (1986), 545-565. Zbl0596.35022MR829596
- [Wein1] M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985), 472-491. Zbl0583.35028MR783974
- [Wein2] M. Weinstein, The nonlinear Schrödinger equation: singularity formation stability and dispersion, in "AMS-SIAM conference on the connection between infinite dimensional and finite dimensional dynamical systems" (1987), 25-40. Zbl0703.35159
- [Z] V. Zakharov - V. Synakh, The nature of self-focusing singularity, Zh. Eksp. Teir. Fiz.68 (1975), 940-947; Sov. Phys. JETP41 (1975), 465-468.
Citations in EuDML Documents
top- Frank Merle, Pierre Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation
- Pierre Raphaël, Sur la dynamique explosive des solutions de l’équation de Schrödinger non linéaire
- Yvan Martel, Frank Merle, Pierre Raphaël, Blow up and near soliton dynamics for the critical gKdV equation
- Galina Perelman, On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D
- Serge Alinhac, Solutions explosives exceptionnelles
- Frank Merle, Pierre Raphaël, Jérémie Szeftel, Two blow-up regimes for supercritical nonlinear Schrödinger equations
- Nicolas Burq, Explosion pour l’équation de Schrödinger au régime du “log log”
- Rémi Carles, Changing blow-up time in nonlinear Schrödinger equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.