Solutions explosives exceptionnelles
- [1] Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France
Séminaire Équations aux dérivées partielles (2005-2006)
- Volume: 2005-2006, page 1-10
Access Full Article
topHow to cite
topAlinhac, Serge. "Solutions explosives exceptionnelles." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-10. <http://eudml.org/doc/11131>.
@article{Alinhac2005-2006,
affiliation = {Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France},
author = {Alinhac, Serge},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {waves equations; explosive solutions; instability},
language = {fre},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Solutions explosives exceptionnelles},
url = {http://eudml.org/doc/11131},
volume = {2005-2006},
year = {2005-2006},
}
TY - JOUR
AU - Alinhac, Serge
TI - Solutions explosives exceptionnelles
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 10
LA - fre
KW - waves equations; explosive solutions; instability
UR - http://eudml.org/doc/11131
ER -
References
top- Alinhac S., “Blowup for Nonlinear Hyperbolic Equations”, Progr. Nonlinear Differential Equations Appl. 17, Birkhäuser Boston, Boston MA, (1995). Zbl0820.35001
- Alinhac S., “ A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations”, Journées “Equations aux Dérivées partielles” (Forges les Eaux, 2002). Université de Nantes, Nantes, 2002. http://www.math.sciences.univ-nantes.fr/edpa.
- Alinhac S., “Explosion géométrique pour des systèmes quasi-linéaires”, Amer. J. Math. 117, (1995), 987-1017. Zbl0840.35060
- Alinhac S., “Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, II”, Acta Math. 182, (1999), 1-23. Zbl0973.35135
- Alinhac S., “Stability of geometric blowup”, Arch. Rat. Mech. Analysis 150, (1999), 97-125. Zbl0962.35119
- Alinhac S., “Remarks on the blowup rate of classical solutions to quasilinear multidimensional hyperbolic systems ”, J. Math. Pure Appl. 79, (2000), 839-854. Zbl0979.35092
- Alinhac S., “Rank two singular solutions for quasilinear wave equations”, Inter. Math. Res. Notices 18, (2000), 955-984. Zbl0971.35053
- Alinhac S., “Exceptional Blowup Solutions to Quasilinear Wave Equations I and II”, Int. Math. Res. Notices, (2006) et preprint Orsay, (2006). Zbl1134.35381
- Alinhac S., “A Numerical Study of Blowup for Wave Equations with Gradient Terms”, preprint, Orsay, (2006).
- Bourgain J., Wang W., “Construction of blowup solutions for the nonlinear Schödinger equation with critical nonlinearity”, Ann. Scuola Norm. Sup. Pisa Cl. Sc. 25, (1997), 197-215. Zbl1043.35137
- Hörmander L., “Lectures on Nonlinear Hyperbolic Differential Equations”, Math. Appl. 26, Springer Verlag, Berlin, (1997). Zbl0881.35001
- John F., “ Nonlinear Wave Equations, Formation of singuarities”, Univ. Lecture Ser. 2, Amer. Math. Soc. , Providence, RI, (1990). Zbl0716.35043
- Klainerman S., “The null condition and global existence to nonlinear wave equations”, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 ( Santa Fe, NM, 1984), 293-326. Lect. Appl. Math. 23, Amer. Math. Soc. , Providence, RI, (1986). Zbl0599.35105
- Lax P. D., “Hyperbolic systems of conservation laws II”, Comm. Pure Appl. Math. 10, (1957), 537-566. Zbl0081.08803
- Majda A., “Compressible fluid flow and systems of conservation laws ”, Appl. Math. Sc. 53, Springer Verlag, New-York (1984). Zbl0537.76001
- Merle F., “Construction of solutions with exactly k blowup points for the Schrödinger equation with critical nonlinearity”, Comm. Math. Physics 129, (1990), 223-240. Zbl0707.35021
- Merle F. et Raphaël P., “On a sharp lower bound on the blowup rate for the critical nonlinear Schrödinger equation”, J. Amer. Math. Soc. 19, (2006), 37-90. Zbl1075.35077
- Merle F. et Zaag H., “Determination of the blowup rate for the semilinear wave equation”, Amer. J. Math. 125, (2003), 1147-1164. Zbl1052.35043
- Merle F. et Zaag H., “Determination of the blowup rate for a critical semilinear wave equation”, Math. Ann. 331, (2005), 395-416. Zbl1136.35055
- Merle F. et Zaag H., “On growth rate near the blowup surface for semilinear wave equations”, Intern. Math. Res. Notices 19, (2005), 1127-1155. Zbl1160.35478
- Perelman G., “On the blowup phenomenon for the critical nonlinear Schrödinger equation in 1D”, Ann. Inst. H. Poincaré 2, (2001), 605-673. Zbl1007.35087
- Raphaël P., “Stability of the log-log bound for blowup solutions to the critical nonlinear Schrödinger equation”, Math. Annalen 331, (2005), 577-609. Zbl1082.35143
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.