Scattering and resolvent on geometrically finite hyperbolic manifolds with rational cusps
- [1] Département de mathématiques J.Dieudonné Université de Nice Parc Valrose, Nice France
Séminaire Équations aux dérivées partielles (2005-2006)
- Volume: 129, Issue: 1, page 1-15
Access Full Article
topAbstract
topHow to cite
topGuillarmou, Colin. "Scattering and resolvent on geometrically finite hyperbolic manifolds with rational cusps." Séminaire Équations aux dérivées partielles 129.1 (2005-2006): 1-15. <http://eudml.org/doc/11138>.
@article{Guillarmou2005-2006,
abstract = {These notes summarize the papers [8, 9] on the analysis of resolvent, Eisenstein series and scattering operator for geometrically finite hyperbolic quotients with rational non-maximal rank cusps. They complete somehow the talk given at the PDE seminar of Ecole Polytechnique in october 2005.},
affiliation = {Département de mathématiques J.Dieudonné Université de Nice Parc Valrose, Nice France},
author = {Guillarmou, Colin},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {resolvent; Poisson operator; scattering theory},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Scattering and resolvent on geometrically finite hyperbolic manifolds with rational cusps},
url = {http://eudml.org/doc/11138},
volume = {129},
year = {2005-2006},
}
TY - JOUR
AU - Guillarmou, Colin
TI - Scattering and resolvent on geometrically finite hyperbolic manifolds with rational cusps
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 129
IS - 1
SP - 1
EP - 15
AB - These notes summarize the papers [8, 9] on the analysis of resolvent, Eisenstein series and scattering operator for geometrically finite hyperbolic quotients with rational non-maximal rank cusps. They complete somehow the talk given at the PDE seminar of Ecole Polytechnique in october 2005.
LA - eng
KW - resolvent; Poisson operator; scattering theory
UR - http://eudml.org/doc/11138
ER -
References
top- U. Bunke, M. Olbrich, Scattering theory for geometrically finite groups, Arxiv: math.DG/9904137. Zbl1154.43005
- R. Froese, P. Hislop, P. Perry, The Laplace operator on hyperbolic three-manifolds with cusps of non-maximal rank, Invent. Math. 106 (1991), 295-333. Zbl0763.58028MR1128217
- I.M. Gelfand, G.E. Shilov, Generalized functions, Vol 1, Academic Press, New-york and London, 1964. Zbl0115.33101MR166596
- R. Graham Volume and area renormalizations for conformally compact Einstein metrics, Rend. Circ. Mat. Palermo, Ser.II, Suppl. 63 (2000), 31-42. Zbl0984.53020MR1758076
- C.R. Graham, R. Jenne, L.J. Manson, G.A.J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), 557-565. Zbl0726.53010MR1190438
- C.R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), 89-118. Zbl1030.58022MR1965361
- C. Guillarmou, Resonances and scattering poles on asymptotically hyperbolic manifolds, Math. Res. Letters, 12 (2005), 103-119. Zbl1072.58022MR2122734
- C. Guillarmou, Resonances on some of geometrically finite hyperbolic manifolds, to appear Comm. P.D.E. Zbl1132.58019MR2209763
- C. Guillarmou, Scattering theory on geometrically finite quotients with rational cusps, submitted. Zbl1235.58021
- C. Guillarmou, Generalized Krein formula, determinants and Selberg zeta function in even dimension, preprint Arxiv. Zbl1207.58023
- L. Guillopé, M. Zworski Upper bounds on the number of resonances for non-compact complete Riemann surfaces, J. Funct. Anal. 129 (1995), 364-389. Zbl0841.58063MR1327183
- L. Guillopé, M. Zworski Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asymp. Anal. 11 (1995), 1-22. Zbl0859.58028MR1344252
- L. Guillopé, M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. Math. 145 (1997), 597-660. Zbl0898.58054MR1454705
- M. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), 41-86. Zbl1142.58309MR1756569
- P. Lax, R. Phillips, The asymptotic distribution of lattice points and noneuclidean spaces, J. Funct. Anal. 46 (1982), no. 3, 280-350. Zbl0497.30036MR661875
- R. Mazzeo , Elliptic theory of differential edge operators. I, Comm. P.D.E. 16 (1991), 1615-1664. Zbl0745.58045MR1133743
- R. Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, American J. Math. 113 (1991), 25-56. Zbl0725.58044MR1087800
- R. Mazzeo, R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310. Zbl0636.58034MR916753
- R. Mazzeo, R. Melrose, Pseudo-differential operators on manifolds with fibred boundaries, Asian J. Math. 2 (1998), no.4, 833-866. Zbl1125.58304MR1734130
- R. Mazzeo, R. Phillips, Hodge theory for hyperbolic manifolds, Duke Math. J. 60 (1990), no. 2, 509-559. Zbl0712.58006MR1047764
- R.Mazzeo, A. Vasy, Analytic continuation of the resolvent of the Laplacian on symmetric spaces of non-compact types, J. Funct. Anal. 228 (2005), 311-368. Zbl1082.58029MR2175410
- R. Melrose, The Atiyah-Patodi-Singer index theorem (AK Peters, Wellesley, 1993). Zbl0796.58050MR1348401
- R. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. Spectral and scattering theory (Sanda, 1992), 85–130, Lecture Notes in Pure and Appl. Math., 161, Dekker, New York, 1994. Zbl0837.35107MR1291640
- S. Patterson, P. Perry, The divisor of Selberg’s zeta function for Kleinian groups. Appendix A by Charles Epstein., Duke Math. J. 106 (2001) 321-391. Zbl1012.11083
- P. Perry, Meromorphic continuation of the resolvent for Kleinian Groups, Spectral problems in geometry and arithmetic (Iowa City, IA, 1997), Contemp. Math. 237 (1999), 123-147. Zbl0942.58033MR1710792
- P. Perry, The Laplace operator on a hyperbolic manifold II, Eisenstein series and the scattering matrix, J. Reine Angew. Math. 398 (1989) 67-91. Zbl0677.58044MR998472
- M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J., 59 (1989), 311-323. Zbl0705.35099MR1016891
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.