The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators
Frédéric Klopp[1]; Magali Marx[2]
- [1] LAGA, Institut Galilée, U.R.A 7539 C.N.R.S, Université Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France et Institut Universitaire de Franc
- [2] Institut Fourier, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Heres cedex, France
Séminaire Équations aux dérivées partielles (2005-2006)
- Volume: 2005-2006, page 1-16
Access Full Article
topHow to cite
topKlopp, Frédéric, and Marx, Magali. "The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-16. <http://eudml.org/doc/11139>.
@article{Klopp2005-2006,
affiliation = {LAGA, Institut Galilée, U.R.A 7539 C.N.R.S, Université Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France et Institut Universitaire de Franc; Institut Fourier, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Heres cedex, France},
author = {Klopp, Frédéric, Marx, Magali},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {resonances; complex WKB method},
language = {eng},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators},
url = {http://eudml.org/doc/11139},
volume = {2005-2006},
year = {2005-2006},
}
TY - JOUR
AU - Klopp, Frédéric
AU - Marx, Magali
TI - The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 16
LA - eng
KW - resonances; complex WKB method
UR - http://eudml.org/doc/11139
ER -
References
top- V. Buslaev and A. Grigis. Imaginary parts of Stark-Wannier resonances. J. Math. Phys., 39(5):2520–2550, 1998. Zbl1001.34075MR1611735
- V. Buslaev and A. Grigis. Turning points for adiabatically perturbed periodic equations. J. Anal. Math., 84:67–143, 2001. Zbl0987.35013MR1849199
- M. Dimassi. Resonances for slowly varying perturbations of a periodic Schrödinger operator. Canad. J. Math., 54(5):998–1037, 2002. Zbl1025.81016MR1924711
- M. Dimassi and M. Zerzeri. A local trace formula for resonances of perturbed periodic Schrödinger operators. J. Funct. Anal., 198(1):142–159, 2003. Zbl1090.35065MR1962356
- M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
- A. Fedotov and F. Klopp. A complex WKB method for adiabatic problems. Asymptot. Anal., 27(3-4):219–264, 2001. Zbl1001.34082MR1858917
- A. Fedotov and F. Klopp. Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys., 227(1):1–92, 2002. Zbl1004.81008MR1903839
- A. Fedotov and F. Klopp. Geometric tools of the adiabatic complex WKB method. Asymptot. Anal., 39(3-4):309–357, 2004. Zbl1070.34124MR2097997
- A. Fedotov and F. Klopp. On the singular spectrum for adiabatic quasi-periodic Schrödinger operators on the real line. Ann. Henri Poincaré, 5(5):929–978, 2004. Zbl1059.81057MR2091984
- A. Fedotov and F. Klopp. On the absolutely continuous spectrum of one-dimensional quasi-periodic Schrödinger operators in the adiabatic limit. Trans. Amer. Math. Soc., 357(11):4481–4516 (electronic), 2005. Zbl1101.34069MR2156718
- N. E. Firsova. On the global quasimomentum in solid state physics. In Mathematical methods in physics (Londrina, 1999), pages 98–141. World Sci. Publishing, River Edge, NJ, 2000. Zbl0996.81124MR1775625
- S. Fujiié and T. Ramond. Matrice de scattering et résonances associées à une orbite hétérocline. Ann. Inst. H. Poincaré Phys. Théor., 69(1):31–82, 1998. Zbl0916.34071MR1635811
- S. Fujiié and T. Ramond. Breit-Wigner formula at barrier tops. J. Math. Phys., 44(5):1971–1983, 2003. Zbl1062.81057MR1972758
- B. Helffer and J. Sjöstrand. Résonances en limite semi-classique. Mém. Soc. Math. France (N.S.), (24-25):iv+228, 1986. Zbl0631.35075MR871788
- P. Hislop and I. Sigal. Semi-classical theory of shape resonances in quantum mechanics. Memoirs of the American Mathematical Society, 78, 1989. Zbl0704.35115
- F. Klopp and M. Marx. Resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators. in progress. Zbl1118.34082
- F. Klopp and M. Marx. Resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators II: oscillation of resonances. in progress. Zbl1118.34082
- V. Marchenko and I. Ostrovskii. A characterization of the spectrum of Hill’s equation. Math. USSR Sbornik, 26:493–554, 1975. Zbl0343.34016
- M. Marx. Étude de perturbations adiabatiques de l’équation de Schrödinger périodique. PhD thesis, Université Paris 13, Villetaneuse, 2004.
- M. Marx. On the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator. To appear in Asymptotic Analysis, 2006. Zbl1124.34063MR2256576
- H. P. McKean and E. Trubowitz. Hill’s surfaces and their theta functions. Bull. Amer. Math. Soc., 84(6):1042–1085, 1978. Zbl0428.34026
- J. Sjöstrand. Lectures on resonances, 2002. http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf
- E.C. Titschmarch. Eigenfunction expansions associated with second-order differential equations. Part II. Clarendon Press, Oxford, 1958. Zbl0097.27601
- M. Zworski. Counting scattering poles. In Spectral and Scattering, volume 161 of Lecture Notes in Pure and Applied Mathematics, pages 301–331, New-York, 1994. Marcel Dekker. Zbl0823.35139MR1291649
- M. Zworski. Quantum resonances and partial differential equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 243–252, Beijing, 2002. Higher Ed. Press. Zbl1136.35432MR1957536
- M. Zworski. Resonances in physics and geometry. Notices Amer. Math. Soc., 46(3):319–328, 1999. Zbl1177.58021MR1668841
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.