The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators

Frédéric Klopp[1]; Magali Marx[2]

  • [1] LAGA, Institut Galilée, U.R.A 7539 C.N.R.S, Université Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France et Institut Universitaire de Franc
  • [2] Institut Fourier, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Heres cedex, France

Séminaire Équations aux dérivées partielles (2005-2006)

  • Volume: 2005-2006, page 1-16

How to cite

top

Klopp, Frédéric, and Marx, Magali. "The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-16. <http://eudml.org/doc/11139>.

@article{Klopp2005-2006,
affiliation = {LAGA, Institut Galilée, U.R.A 7539 C.N.R.S, Université Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France et Institut Universitaire de Franc; Institut Fourier, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Heres cedex, France},
author = {Klopp, Frédéric, Marx, Magali},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {resonances; complex WKB method},
language = {eng},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators},
url = {http://eudml.org/doc/11139},
volume = {2005-2006},
year = {2005-2006},
}

TY - JOUR
AU - Klopp, Frédéric
AU - Marx, Magali
TI - The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 16
LA - eng
KW - resonances; complex WKB method
UR - http://eudml.org/doc/11139
ER -

References

top
  1. V. Buslaev and A. Grigis. Imaginary parts of Stark-Wannier resonances. J. Math. Phys., 39(5):2520–2550, 1998. Zbl1001.34075MR1611735
  2. V. Buslaev and A. Grigis. Turning points for adiabatically perturbed periodic equations. J. Anal. Math., 84:67–143, 2001. Zbl0987.35013MR1849199
  3. M. Dimassi. Resonances for slowly varying perturbations of a periodic Schrödinger operator. Canad. J. Math., 54(5):998–1037, 2002. Zbl1025.81016MR1924711
  4. M. Dimassi and M. Zerzeri. A local trace formula for resonances of perturbed periodic Schrödinger operators. J. Funct. Anal., 198(1):142–159, 2003. Zbl1090.35065MR1962356
  5. M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
  6. A. Fedotov and F. Klopp. A complex WKB method for adiabatic problems. Asymptot. Anal., 27(3-4):219–264, 2001. Zbl1001.34082MR1858917
  7. A. Fedotov and F. Klopp. Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys., 227(1):1–92, 2002. Zbl1004.81008MR1903839
  8. A. Fedotov and F. Klopp. Geometric tools of the adiabatic complex WKB method. Asymptot. Anal., 39(3-4):309–357, 2004. Zbl1070.34124MR2097997
  9. A. Fedotov and F. Klopp. On the singular spectrum for adiabatic quasi-periodic Schrödinger operators on the real line. Ann. Henri Poincaré, 5(5):929–978, 2004. Zbl1059.81057MR2091984
  10. A. Fedotov and F. Klopp. On the absolutely continuous spectrum of one-dimensional quasi-periodic Schrödinger operators in the adiabatic limit. Trans. Amer. Math. Soc., 357(11):4481–4516 (electronic), 2005. Zbl1101.34069MR2156718
  11. N. E. Firsova. On the global quasimomentum in solid state physics. In Mathematical methods in physics (Londrina, 1999), pages 98–141. World Sci. Publishing, River Edge, NJ, 2000. Zbl0996.81124MR1775625
  12. S. Fujiié and T. Ramond. Matrice de scattering et résonances associées à une orbite hétérocline. Ann. Inst. H. Poincaré Phys. Théor., 69(1):31–82, 1998. Zbl0916.34071MR1635811
  13. S. Fujiié and T. Ramond. Breit-Wigner formula at barrier tops. J. Math. Phys., 44(5):1971–1983, 2003. Zbl1062.81057MR1972758
  14. B. Helffer and J. Sjöstrand. Résonances en limite semi-classique. Mém. Soc. Math. France (N.S.), (24-25):iv+228, 1986. Zbl0631.35075MR871788
  15. P. Hislop and I. Sigal. Semi-classical theory of shape resonances in quantum mechanics. Memoirs of the American Mathematical Society, 78, 1989. Zbl0704.35115
  16. F. Klopp and M. Marx. Resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators. in progress. Zbl1118.34082
  17. F. Klopp and M. Marx. Resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators II: oscillation of resonances. in progress. Zbl1118.34082
  18. V. Marchenko and I. Ostrovskii. A characterization of the spectrum of Hill’s equation. Math. USSR Sbornik, 26:493–554, 1975. Zbl0343.34016
  19. M. Marx. Étude de perturbations adiabatiques de l’équation de Schrödinger périodique. PhD thesis, Université Paris 13, Villetaneuse, 2004. 
  20. M. Marx. On the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator. To appear in Asymptotic Analysis, 2006. Zbl1124.34063MR2256576
  21. H. P. McKean and E. Trubowitz. Hill’s surfaces and their theta functions. Bull. Amer. Math. Soc., 84(6):1042–1085, 1978. Zbl0428.34026
  22. J. Sjöstrand. Lectures on resonances, 2002. http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf 
  23. E.C. Titschmarch. Eigenfunction expansions associated with second-order differential equations. Part II. Clarendon Press, Oxford, 1958. Zbl0097.27601
  24. M. Zworski. Counting scattering poles. In Spectral and Scattering, volume 161 of Lecture Notes in Pure and Applied Mathematics, pages 301–331, New-York, 1994. Marcel Dekker. Zbl0823.35139MR1291649
  25. M. Zworski. Quantum resonances and partial differential equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 243–252, Beijing, 2002. Higher Ed. Press. Zbl1136.35432MR1957536
  26. M. Zworski. Resonances in physics and geometry. Notices Amer. Math. Soc., 46(3):319–328, 1999. Zbl1177.58021MR1668841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.