Matrice de scattering et résonances associées à une orbite hétérocline
Setsuro Fujiié; Thierry Ramond
Annales de l'I.H.P. Physique théorique (1998)
- Volume: 69, Issue: 1, page 31-82
- ISSN: 0246-0211
Access Full Article
topHow to cite
topFujiié, Setsuro, and Ramond, Thierry. "Matrice de scattering et résonances associées à une orbite hétérocline." Annales de l'I.H.P. Physique théorique 69.1 (1998): 31-82. <http://eudml.org/doc/76796>.
@article{Fujiié1998,
author = {Fujiié, Setsuro, Ramond, Thierry},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger operator; scattering matrix; resonances},
language = {fre},
number = {1},
pages = {31-82},
publisher = {Gauthier-Villars},
title = {Matrice de scattering et résonances associées à une orbite hétérocline},
url = {http://eudml.org/doc/76796},
volume = {69},
year = {1998},
}
TY - JOUR
AU - Fujiié, Setsuro
AU - Ramond, Thierry
TI - Matrice de scattering et résonances associées à une orbite hétérocline
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 1
SP - 31
EP - 82
LA - fre
KW - Schrödinger operator; scattering matrix; resonances
UR - http://eudml.org/doc/76796
ER -
References
top- [B-C-D]1 P. Briet, J.-M. Combes and P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit I: Resonances free domains, Journal of Mathematical Analysis and Applications, vol. 126, 1987, n.1. Zbl0629.47043MR900530
- [B-C-D]2 P. Briet, J.-M. Combes and P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit II: Barrier top resonances, Comm. in Partial Differential Equations, vol. 12, 2, 1987, p.201-222. Zbl0622.47047MR876987
- [De] J.M. Delort, F.B.I. transformation, Lecture Notes in Maths n.1522, Springer–Verlag, 1993. MR1186645
- [Du] P. Duclos, A global approach to the location of quantum resonances, Operator Theory: Advances and Applications, vol.57, Birkhäuser Verlag, 1992. Zbl0877.47038MR1230889
- [Ec] J. Ecalle, Les Fonctions résurgentes, Publications Mathématiques d'Orsay, 1981, p. 81-05.
- [Fu-Ra] S. Fujiié and T. Ramond, Semiclassical resonances for the radial Schrödinger equation at fixed angular momentum, en préparation.
- [Ge-Gr] C. Gérard and A. Grigis, Precise estimates of tunneling and eigenvalues near a potential barrier, J. of Diff. Equations, vol. 42, 1988, p.149-177. Zbl0668.34022MR929202
- [He-Sj]1 B. Helffer and J. Sjöstrand, Résonances en limite semiclassique, Mémoires de la Société Mathématique de France, n. 24,25, 1985.
- [He-Sj]2 B. Helffer and J. Sjöstrand, Semiclassical analysis of Harper's equation III, Bull. Soc. Math. France, Mémoire n.39, 1990. Zbl0759.47022
- [Ko] Korsch, Semiclassical theory of resonances, Lecture Notes in Physics No. 211, Springer, 1987.
- [L-T-M] S.Y. Lee, N. Takigawa and C. Marty, A semiclassical study of optical potentials: Potential resonances, Nuclear Physics A308, 1978, p.161-188.
- [Mä] C. März, Spectral asymptotics for Hill's equation near the potential maximum, Asymptotic Analysis5, 1992, p.221-267. Zbl0786.34080MR1145112
- [Po] C. Pommerenke, Univalent functions, Studia Mathematica XXV, Vandenhoeck and Ruprecht, Göttingen1975. MR507768
- [Ra] T. Ramond, Semiclassical study of quantum scattering on the line, Communications in Mathematical Physics Vol. 177, 1996, p.221-254. Zbl0848.34074MR1382227
- [Sj]1 S. Sjöstrand, Semiclassical resonances generated by non-degenerate critical points, Lecture Notes in Maths n.1256, Springer, 1987, p.402-429. Zbl0627.35074
- [Sj]2 S. Sjöstrand, Singularités analytiques microlocales, Astérisque n.95, 1982. Zbl0524.35007
- [Sj-Zw] S. Sjöstrand and M. Zworski, Complex scaling and distribution of scattering poles, Journal of the American Mathematical Society, Vol. 4, 1991. Zbl0752.35046MR1115789
- [Vo] A. Voros, The Return of the Quartic Oscillator. The Complex WKB Method. Ann. Inst. H. Poincaré Phys. Théor., vol. 39 (3), (1983). Zbl0526.34046MR729194
Citations in EuDML Documents
top- Jean-François Bony, Résonances près d’une énergie critique
- Frédéric Klopp, Magali Marx, The width of resonances for slowly varying perturbations of one-dimensional periodic Schrödinger operators
- Jean-François Bony, Laurent Michel, Microlocalization of resonant states and estimates of the residue of the scattering amplitude
- Johannes Sjöstrand, Bohr–Sommerfeld quantization condition for non-selfadjoint operators in dimension 2.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.