Effet régularisant pour les solutions de l’équation de Schrödinger dans un domaine extérieur
Séminaire Équations aux dérivées partielles (2006-2007)
- Volume: 2006-2007, page 1-10
Access Full Article
topHow to cite
topRobbiano, Luc, and Zuily, Claude. "Effet régularisant pour les solutions de l’équation de Schrödinger dans un domaine extérieur." Séminaire Équations aux dérivées partielles 2006-2007 (2006-2007): 1-10. <http://eudml.org/doc/11148>.
@article{Robbiano2006-2007,
author = {Robbiano, Luc, Zuily, Claude},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Effet régularisant pour les solutions de l’équation de Schrödinger dans un domaine extérieur},
url = {http://eudml.org/doc/11148},
volume = {2006-2007},
year = {2006-2007},
}
TY - JOUR
AU - Robbiano, Luc
AU - Zuily, Claude
TI - Effet régularisant pour les solutions de l’équation de Schrödinger dans un domaine extérieur
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2006-2007
SP - 1
EP - 10
LA - fre
UR - http://eudml.org/doc/11148
ER -
References
top- Burq N. : Mesures semi classiques et mesures de défaut, Séminaire Bourbaki, Astéristique n245 (1997), p. 167-195. Zbl0954.35102MR1627111
- Burq N. : Smoothing Effect for Schrödinger Boundary Value Problems, Duke Math. Journal 123 (2004), 403-427. Zbl1061.35024MR2066943
- Burq N. : Semi-classical estimates for the resolvant in non trapping geometries, IMRN n5 (2002), p. 221-241. Zbl1161.81368MR1876933
- Burq N., Gérard P. : Condition nécessaire et suffisante pour la controlabilité exacte des ondes, CRAS 325 (1997), 749-752. Zbl0906.93008MR1483711
- Constantin, P., Saut, J-C. : Local smoothing properties of dispersive equations, Journal American Mathematical Society (1988) 413-439. Zbl0667.35061MR928265
- Davies E.B., Spectral theory and differential operators, Cambridge studies in advanced mathematics, 42, Cambridge Univers. press Zbl0893.47004MR1349825
- Doï, S. : Smoothing effects of Schrödinger evolution group on Riemannian manifolds, Duke Math. J. 82 (1996) 679-706. Zbl0870.58101MR1387689
- Doï, S. : Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000) 355-389. Zbl0969.35029MR1795567
- Doï, S. : Remarks on the Cauchy problem for Schrödinger type equations, Comm. in pde, 21 (1996) 163-178. Zbl0853.35025MR1373768
- Doï, S. : Smoothness of solutions for Schrödinger equations with unbounded potential., Publ.Res.Inst.Math.Sci 41 (2005), 1, 175-221. Zbl1082.35054MR2115971
- Gérard P., Leichtnam E. : Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 n2 (1993), p. 559-607. Zbl0788.35103MR1233448
- Hörmander L. : The analysis of Linear Partial Differential Operators I, III, Springer Verlag, Berlin, Heidelberg, New-York (1985). Zbl0601.35001MR781537
- Kato T. : On the Cauchy problem for the (generalized) KdV equation, Stud. Appl. Math. Adv. Math. Suppl. Stud. 8 (1983) 93-128. Zbl0549.34001MR759907
- Lebeau G. : Équation des ondes amorties. Algebraic and Geometric methods in math. physics, Math. Phys. Math. Studies, vol. 19, Kluwer Acad. Publ. Dovdrecht (1996), p. 73-109. Zbl0863.58068MR1385677
- Lions P.L., Paul, T. : Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993) 553-618 Zbl0801.35117MR1251718
- Melrose R.B., Sjöstrand J. : Singularities of boundary value problems I, Comm. Pure Appl. Math 31 n 5 (1978), 593-617. Zbl0368.35020MR492794
- Miller L. : Refraction of high-frequency waves density by sharp interfaces and semi classical measures at the boundary, J. Math. Pures Appl. (9) 79 n 3 (2000), p. 227-269. Zbl0963.35022MR1750924
- Robbiano L., Zuily C. : Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials Preprint. Zbl1147.35359
- Sjölin P. : Regularity of solution to the Schrödinger equation, Duke Math. J. 55 (1987) 699-715. Zbl0631.42010MR904948
- Tartar, Luc : Memory effects and homogenization Arch. Rational Mech. Anal. 111 (1990) 121-133. Zbl0725.45012MR1057651
- Vega L. : Schrödinger equations, pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988) 874-878. Zbl0654.42014MR934859
- Yajima K. : On smoothing property of Schrödinger propagator, Lectures notes in Math. 1450 Springer Verlag (1990) 20-35. Zbl0725.35084MR1084599
- Yajima K., Zhang G.P. : Smoothing property for Schrödinger equations with potential super-quadratic at infinity, Comm. Math. Phys. 221 (2001) 573-590. Zbl1102.35320MR1852054
- Yajima K., Zhang G.P. : Local smoothing property and Strichartz inequality for Schrödinger equations with potential superquadratic at infinity, Journ. Diff. Equ. 202 (2004) 81-110. Zbl1060.35121MR2060533
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.