Dynamique des tourbillons de vorticité pour l’équation de Ginzburg-Landau parabolique
Fabrice Bethuel; Giandomenico Orlandi; Didier Smets
Séminaire Équations aux dérivées partielles (2006-2007)
- Volume: 342, Issue: 11, page 1-16
Access Full Article
topHow to cite
topBethuel, Fabrice, Orlandi, Giandomenico, and Smets, Didier. "Dynamique des tourbillons de vorticité pour l’équation de Ginzburg-Landau parabolique." Séminaire Équations aux dérivées partielles 342.11 (2006-2007): 1-16. <http://eudml.org/doc/11153>.
@article{Bethuel2006-2007,
author = {Bethuel, Fabrice, Orlandi, Giandomenico, Smets, Didier},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {complex parabolic Ginzburg-Landau equation; Kirchhoff-Onsager functional; vortex collisions},
language = {fre},
number = {11},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Dynamique des tourbillons de vorticité pour l’équation de Ginzburg-Landau parabolique},
url = {http://eudml.org/doc/11153},
volume = {342},
year = {2006-2007},
}
TY - JOUR
AU - Bethuel, Fabrice
AU - Orlandi, Giandomenico
AU - Smets, Didier
TI - Dynamique des tourbillons de vorticité pour l’équation de Ginzburg-Landau parabolique
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 342
IS - 11
SP - 1
EP - 16
LA - fre
KW - complex parabolic Ginzburg-Landau equation; Kirchhoff-Onsager functional; vortex collisions
UR - http://eudml.org/doc/11153
ER -
References
top- L. Almeida, F. Bethuel, Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998), 1–49. Zbl0904.35023MR1617594
- F. Bethuel, G. Orlandi, Ginzburg-Landau functionals, phase transitions and vorticity. In Noncompact problems at the intersection of geometry, analysis, and topology, 35–47, Contemp. Math. 350, Amer. Math. Soc., (2004). Zbl1073.35085MR2082389
- H. Brezis, J.M. Coron, H. Lieb, Harmonic maps with defects, Comm. Math. Phys.107 (1986), 649–705. Zbl0608.58016MR868739
- F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Birkhäuser, Boston, (1994). Zbl0802.35142MR1269538
- F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interaction in dissipative Ginzburg-Landau dynamics, Duke Math. J. 130 (2005), 523-614. Zbl1087.35008MR2184569
- F. Bethuel, G. Orlandi and D. Smets, Quantization and motion law for Ginzburg-Landau vortices, Arch. Rational Mech. Anal., 183 (2007), 315–370 Zbl1105.76062MR2278409
- F. Bethuel, G. Orlandi and D. Smets, Dynamics of multiple degree Ginzburg-Landau vortices, Comm. Math. Phys., à paraître. Zbl1135.35014
- F. Bethuel, G. Orlandi and D. Smets, On the Cauchy problem for phase and vortices in the parabolic Ginzburg-Landau equation, Proceedings Centre de recherche Mathématique de Montréal,à paraître. Zbl1144.35399
- M. Comte and P. Mironescu, Remarks on nonminimizing solutions of a Ginzburg-Landau type equation, Asymptotic Anal. 13 (1996), 199-215. Zbl0861.35023MR1413860
- W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D 77 (1994), 383-404. Zbl0814.34039MR1297726
- R.L. Jerrard and H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998), 99-125. Zbl0923.35167MR1629646
- F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), 323-359. Zbl0853.35058MR1376654
- , S. Lojasiewicz, Une propiété topologique des sous-ensembles analytiques réels, Colloques internationaux du CNRS 117, Les équations aux dérivées partielles, 1963. Zbl0234.57007MR160856
- L. Peres and J. Rubinstein, Vortex dynamics in Ginzburg-Landau models, Phys. D 64 (1993), 299-309. Zbl0772.35069MR1214555
- P. Mironescu, Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symétrie radiale, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 593–598. Zbl0858.35038
- F. Pacard, T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications 39. Birkhäuser Boston, (2000). Zbl0948.35003MR1763040
- E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure App. Math. 57 (2004), 1627-1672. Zbl1065.49011MR2082242
- S. Serfaty, Vortex Collision and Energy Dissipation Rates in the Ginzburg-Landau Heat Flow, preprint 2005.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.