Time averaging for the strongly confined nonlinear Schrödinger equation
Séminaire Équations aux dérivées partielles (2006-2007)
- Volume: 2006-2007, page 1-22
Access Full Article
topHow to cite
topCastella, François. "Time averaging for the strongly confined nonlinear Schrödinger equation." Séminaire Équations aux dérivées partielles 2006-2007 (2006-2007): 1-22. <http://eudml.org/doc/11158>.
@article{Castella2006-2007,
author = {Castella, François},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equation; nonlinear gas; Weyl-Hörmander calculus},
language = {eng},
pages = {1-22},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Time averaging for the strongly confined nonlinear Schrödinger equation},
url = {http://eudml.org/doc/11158},
volume = {2006-2007},
year = {2006-2007},
}
TY - JOUR
AU - Castella, François
TI - Time averaging for the strongly confined nonlinear Schrödinger equation
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2006-2007
SP - 1
EP - 22
LA - eng
KW - nonlinear Schrödinger equation; nonlinear gas; Weyl-Hörmander calculus
UR - http://eudml.org/doc/11158
ER -
References
top- G. Bastard, Wave mechanics applied to semiconductor heterostructures, Les éditions de physique, 1996.
- W. Bao, P. Markowich, C. Schmeiser, R. Weishäupl, On the Gross-Pitaevski equation with strongly anisotropic confinement: formal asymptotics and numerical experiments, preprint (2004). Zbl1075.35073MR2139943
- N. Ben Abdallah, F. Méhats, Semiclassical analysis of the Schrödinger equation with a partially confining potential, J. Math. Pures Appl. 84, pp. 580-614 (2005). Zbl1162.35343MR2134849
- N. Ben Abdallah, F. Méhats, C. Schmeiser, R. M. Weishäupl, The nonlinear Schrödinger equation with strong anisotropic harmonic potential, to appear in SIAM J. Math. Anal. Zbl1094.35114MR2176928
- N. Ben Abdallah, F. Méhats, O. Pinaud, The adiabatic approximation of the Schrödinger Poisson system with a partial confinement, SIAM J. Math. Anal. 36, N.3, pp. 986-1013 (2005). Zbl1074.35008MR2111922
- B. Bidégaray, F. Castella, P. Degond, From Bloch model to the rate equations, Disc. Cont. Dyn. Sys., Vol. 11, N. 1, pp. 1-26 (2004). Zbl1055.81079MR2073944
- B. Bidégaray-Fesquet, F. Castella, E. Dumas, M. Gisclon, From Bloch model to the rate equations II: the case of almost degenerate energy levels, Math. Mod. Meth. Appl. Sci., Vol. 14, pp. 1785-1817 (2004). Zbl1069.81081MR2108230
- J.-M. Bony, J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, Vol. 122, N. 1, pp. 77-118 (1994). Zbl0798.35172MR1259109
- F. Castella, P. Degond, T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force, J. Stat. Phys., Vol. 124, N. 2-4, pp. 913-950 (2006). Zbl1134.82033MR2264630
- F. Castella, P. Degond, T. Goudon, Large time dynamics of a classical system subject to a fast varying force, to appear in Comm. Math. Phys. (2007). Zbl1127.37052MR2342287
- D. K. Ferry, S. M. Goodnick, Transport in nanostructures, Cambridge Univ. Press, 1997.
- E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl., Vol. 76, pp. 477-498 (1997). Zbl0885.35090MR1465607
- G. A. Hagedorn, A. Joye, A time-dependent Born-Oppenheimer approximation with exponentially small error estimates, Comm. Math. Phys. 223, N. 3, pp. 583-626 (2001). Zbl1161.81376MR1866168
- B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, Vol. 112, Soc. Math. de France (1984). Zbl0541.35002MR743094
- B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Lalacians, Springer, to appear (2005). Zbl1072.35006MR2130405
- B. Helffer, D. Robert, Caclcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Vol. 53, N. 3, pp. 246-268 (1983). Zbl0524.35103MR724029
- L. Hörmander, The analysis of linear partial differential operators, Springer (1985). Zbl0601.35001
- T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1966. Zbl0148.12601MR203473
- B.M. Levitan, V.V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press (1982). Zbl0499.43005MR690064
- P. Lochak, C. Meunier, Multiphase averaging for classical systems. With applications to adiabatic theorems, Applied Mathematical Sciences, Vol. 72. Springer-Verlag. (1988). Zbl0668.34044MR959890
- A. Martinez, An introduction to Semicassical and Microlocal Analysis, Universitext, Springer-Verlag, New York (2002). Zbl0994.35003MR1872698
- G. Métivier, S. Schochet, Averaging Theorems for conservative systems and the weakly compressible Euler equations, J. Diff. Eq., Vol. 187, N. 1, pp. 106-183 (2003). Zbl1029.34035MR1946548
- K. A. Mitchell, Geometric phase, curvature, and Extrapotentials in Constrained Quantum Systems, preprint arXiv:quant-ph/0001059, 18 Jan 2000.
- O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement: the stationary case, J. Math. Phys. 45, N. 5, pp. 2029-2050 (2004). Zbl1071.82047MR2054147
- E. Polizzi, N. Ben Abdallah, Self-consistent three dimensional model for quantum ballistic transport in open systems, Phys. Rev B. 66, pp. 245301-245309 (2002).
- M. Reed, B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, San Francisco and London, 1975. Zbl0308.47002MR493420
- J.A. Sanders, F. Verhulst, Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, Vol. 59 (Springer-Verlag, 1985). Zbl0586.34040MR810620
- S. Schochet, Fast singular limits of hyperbolic PDEs, J. Diff. Eq., Vol. 114, N. 2, pp. 476-512 (1994). Zbl0838.35071MR1303036
- H. Spohn, S. Teufel, Adiabatic decoupling and time-dependent Born-Oppenheimer theory, Comm. Math. Phys. 224, N. 1, pp. 113-132. (2001). Zbl1017.81014MR1868994
- S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Habilitationsschrift, Zentrum Mathematik Technische Universität München, 2002. Zbl1053.81003MR2158392
- W.-M. Wang, Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Preprint. Zbl1144.81018MR2358292
- W.-M. Wang, Quasi-periodic solutions of nonlinearly perturbed quantum harmonic oscillator, Preprint.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.