Time averaging for the strongly confined nonlinear Schrödinger equation

François Castella

Séminaire Équations aux dérivées partielles (2006-2007)

  • Volume: 2006-2007, page 1-22

How to cite


Castella, François. "Time averaging for the strongly confined nonlinear Schrödinger equation." Séminaire Équations aux dérivées partielles 2006-2007 (2006-2007): 1-22. <http://eudml.org/doc/11158>.

author = {Castella, François},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equation; nonlinear gas; Weyl-Hörmander calculus},
language = {eng},
pages = {1-22},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Time averaging for the strongly confined nonlinear Schrödinger equation},
url = {http://eudml.org/doc/11158},
volume = {2006-2007},
year = {2006-2007},

AU - Castella, François
TI - Time averaging for the strongly confined nonlinear Schrödinger equation
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2006-2007
SP - 1
EP - 22
LA - eng
KW - nonlinear Schrödinger equation; nonlinear gas; Weyl-Hörmander calculus
UR - http://eudml.org/doc/11158
ER -


  1. G. Bastard, Wave mechanics applied to semiconductor heterostructures, Les éditions de physique, 1996. 
  2. W. Bao, P. Markowich, C. Schmeiser, R. Weishäupl, On the Gross-Pitaevski equation with strongly anisotropic confinement: formal asymptotics and numerical experiments, preprint (2004). Zbl1075.35073MR2139943
  3. N. Ben Abdallah, F. Méhats, Semiclassical analysis of the Schrödinger equation with a partially confining potential, J. Math. Pures Appl. 84, pp. 580-614 (2005). Zbl1162.35343MR2134849
  4. N. Ben Abdallah, F. Méhats, C. Schmeiser, R. M. Weishäupl, The nonlinear Schrödinger equation with strong anisotropic harmonic potential, to appear in SIAM J. Math. Anal. Zbl1094.35114MR2176928
  5. N. Ben Abdallah, F. Méhats, O. Pinaud, The adiabatic approximation of the Schrödinger Poisson system with a partial confinement, SIAM J. Math. Anal. 36, N.3, pp. 986-1013 (2005). Zbl1074.35008MR2111922
  6. B. Bidégaray, F. Castella, P. Degond, From Bloch model to the rate equations, Disc. Cont. Dyn. Sys., Vol. 11, N. 1, pp. 1-26 (2004). Zbl1055.81079MR2073944
  7. B. Bidégaray-Fesquet, F. Castella, E. Dumas, M. Gisclon, From Bloch model to the rate equations II: the case of almost degenerate energy levels, Math. Mod. Meth. Appl. Sci., Vol. 14, pp. 1785-1817 (2004). Zbl1069.81081MR2108230
  8. J.-M. Bony, J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, Vol. 122, N. 1, pp. 77-118 (1994). Zbl0798.35172MR1259109
  9. F. Castella, P. Degond, T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force, J. Stat. Phys., Vol. 124, N. 2-4, pp. 913-950 (2006). Zbl1134.82033MR2264630
  10. F. Castella, P. Degond, T. Goudon, Large time dynamics of a classical system subject to a fast varying force, to appear in Comm. Math. Phys. (2007). Zbl1127.37052MR2342287
  11. D. K. Ferry, S. M. Goodnick, Transport in nanostructures, Cambridge Univ. Press, 1997. 
  12. E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl., Vol. 76, pp. 477-498 (1997). Zbl0885.35090MR1465607
  13. G. A. Hagedorn, A. Joye, A time-dependent Born-Oppenheimer approximation with exponentially small error estimates, Comm. Math. Phys. 223, N. 3, pp. 583-626 (2001). Zbl1161.81376MR1866168
  14. B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, Vol. 112, Soc. Math. de France (1984). Zbl0541.35002MR743094
  15. B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Lalacians, Springer, to appear (2005). Zbl1072.35006MR2130405
  16. B. Helffer, D. Robert, Caclcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Vol. 53, N. 3, pp. 246-268 (1983). Zbl0524.35103MR724029
  17. L. Hörmander, The analysis of linear partial differential operators, Springer (1985). Zbl0601.35001
  18. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1966. Zbl0148.12601MR203473
  19. B.M. Levitan, V.V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press (1982). Zbl0499.43005MR690064
  20. P. Lochak, C. Meunier, Multiphase averaging for classical systems. With applications to adiabatic theorems, Applied Mathematical Sciences, Vol. 72. Springer-Verlag. (1988). Zbl0668.34044MR959890
  21. A. Martinez, An introduction to Semicassical and Microlocal Analysis, Universitext, Springer-Verlag, New York (2002). Zbl0994.35003MR1872698
  22. G. Métivier, S. Schochet, Averaging Theorems for conservative systems and the weakly compressible Euler equations, J. Diff. Eq., Vol. 187, N. 1, pp. 106-183 (2003). Zbl1029.34035MR1946548
  23. K. A. Mitchell, Geometric phase, curvature, and Extrapotentials in Constrained Quantum Systems, preprint arXiv:quant-ph/0001059, 18 Jan 2000. 
  24. O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement: the stationary case, J. Math. Phys. 45, N. 5, pp. 2029-2050 (2004). Zbl1071.82047MR2054147
  25. E. Polizzi, N. Ben Abdallah, Self-consistent three dimensional model for quantum ballistic transport in open systems, Phys. Rev B. 66, pp. 245301-245309 (2002). 
  26. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, San Francisco and London, 1975. Zbl0308.47002MR493420
  27. J.A. Sanders, F. Verhulst, Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, Vol. 59 (Springer-Verlag, 1985). Zbl0586.34040MR810620
  28. S. Schochet, Fast singular limits of hyperbolic PDEs, J. Diff. Eq., Vol. 114, N. 2, pp. 476-512 (1994). Zbl0838.35071MR1303036
  29. H. Spohn, S. Teufel, Adiabatic decoupling and time-dependent Born-Oppenheimer theory, Comm. Math. Phys. 224, N. 1, pp. 113-132. (2001). Zbl1017.81014MR1868994
  30. S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Habilitationsschrift, Zentrum Mathematik Technische Universität München, 2002. Zbl1053.81003MR2158392
  31. W.-M. Wang, Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Preprint. Zbl1144.81018MR2358292
  32. W.-M. Wang, Quasi-periodic solutions of nonlinearly perturbed quantum harmonic oscillator, Preprint. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.