Approximation polynomiale sur un compact de N

M. S. Baouendi

Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973)

  • page 1-6

How to cite

top

Baouendi, M. S.. "Approximation polynomiale sur un compact de $\mathbb {R}^N$." Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973): 1-6. <http://eudml.org/doc/111595>.

@article{Baouendi1972-1973,
author = {Baouendi, M. S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-6},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Approximation polynomiale sur un compact de $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/111595},
year = {1972-1973},
}

TY - JOUR
AU - Baouendi, M. S.
TI - Approximation polynomiale sur un compact de $\mathbb {R}^N$
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1972-1973
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 6
LA - fre
UR - http://eudml.org/doc/111595
ER -

References

top
  1. [1] M.S. Baouendi et C. Goulaouic: Approximation polynomiale, Ann. Inst. Fourier, t.21 (1971) p. 149-173. Zbl0215.17503MR352790
  2. [2] M.S. Baouendi et C. Goulaouic: Bernstein inequality and approximation of analytic functions on compact sets. (à paraître). Zbl0296.41016
  3. [3] S. Bernstein: Oeuvres complètes 
  4. [4] G.G. Lorentz: Approximation of functions, Elsevier, 1965. 
  5. [5] W.L. Walsh: Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Coll. publications v.20 (1969). JFM61.0315.01
  6. [6] M. Zerner: Développement en série de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sc. Paris, t. 268 (1969), 218-220. Zbl0189.14601MR247451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.