On the energy critical focusing non-linear wave equation
Séminaire Équations aux dérivées partielles (2006-2007)
- Volume: 166, Issue: 3, page 1-12
Access Full Article
topHow to cite
topKenig, Carlos E., and Merle, Frank. "On the energy critical focusing non-linear wave equation." Séminaire Équations aux dérivées partielles 166.3 (2006-2007): 1-12. <http://eudml.org/doc/11161>.
@article{Kenig2006-2007,
author = {Kenig, Carlos E., Merle, Frank},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {global well-posedness; blow-up; radial case; nonlinear Schrödinger equation; defocusing; focusing},
language = {eng},
number = {3},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the energy critical focusing non-linear wave equation},
url = {http://eudml.org/doc/11161},
volume = {166},
year = {2006-2007},
}
TY - JOUR
AU - Kenig, Carlos E.
AU - Merle, Frank
TI - On the energy critical focusing non-linear wave equation
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 166
IS - 3
SP - 1
EP - 12
LA - eng
KW - global well-posedness; blow-up; radial case; nonlinear Schrödinger equation; defocusing; focusing
UR - http://eudml.org/doc/11161
ER -
References
top- C. Antonini and F. Merle, Optimal bounds on positive blow-up solutions for a semilinear wave equation, Internat. Math. Res. Notices 21 (2001), 1141–1167. Zbl0989.35090MR1861514
- N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds, Ark. Mat. 4 (1962), 417–453. Zbl0107.07803MR140031
- T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant le courbure scalaire, J. Math. Pures Appl. (9), 55, 1976, 3, 269–296. Zbl0336.53033MR431287
- H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math 121 (1999), 131–175. Zbl0919.35089MR1705001
- H. Brézis and M. Marcus, Hardy’s inequalities revisited, Ann. Scuola Norm. Piza 25 (1997), 217–237. Zbl1011.46027
- M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation, J. Funct. Anal. 100 (1991), 87–109. Zbl0743.35067MR1124294
- P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var. 3 (1998), 213–233.
- Y. Giga and R. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 223–241. Zbl0703.35020MR1003437
- J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal. 110 (1992), 96–130. Zbl0813.35054MR1190421
- J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50–68. Zbl0849.35064MR1351643
- M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. 132 (1990), 485–509. Zbl0736.35067MR1078267
- M. Grillakis, Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math. 45 (1992), 749–774. Zbl0785.35065MR1162370
- L. Hörmander, “The analysis of linear partial differential operators III”, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984. Zbl0601.35001
- D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985), 463–494. Zbl0593.35119MR794370
- L. Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett., 1 (1994), no. 2, 211–223. Zbl0841.35067MR1266760
- C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, non-linear Schrödinger equation, Preprint. Zbl1183.35202
- C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, non-linear Schrödinger equation in the radical case, Invent. Math. 166 (2006), no. 3, 645–675. Zbl1115.35125MR2257393
- C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620. Zbl0808.35128MR1211741
- S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), 353–392. Zbl1038.35119MR1855973
- J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation, to appear, Amer. J. of Math. Zbl1219.35144MR2325106
- H. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form , Trans. Amer. Math. Soc. 192 (1974), 1–21. Zbl0288.35003MR344697
- H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357–426. Zbl0846.35085MR1335386
- F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 (2001), 555–578. Zbl0970.35128MR1824989
- F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation, Amer. J. of Math. 125 (2003), 1147–1164. Zbl1052.35043MR2004432
- F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann. 316 (2000), no. 1, 103–137. Zbl0939.35086MR1735081
- L.E. Payne and D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22, (1975), 273–303. Zbl0317.35059MR402291
- H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984), 261–270. Zbl0538.35063MR731347
- D.H. Sattinger, On global solutions of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30, (1968), 148–172. Zbl0159.39102MR227616
- J. Shatah and M. Struwe, Regularity results for nonlinear wave equations, Ann. of Math. 138 (1993), 503–518. Zbl0836.35096MR1247991
- J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices 7 (1994), 303–309. Zbl0830.35086MR1283026
- J. Shatah and M. Struwe, “Geometric wave equations,” Courant Lecture Notes in Mathematics, 2 (1998). Zbl0993.35001
- C. Sogge, “Lectures on nonlinear wave equations,” Monographs in Analysis II, International Press, 1995. Zbl1089.35500
- G. Staffilani, On the generalized Korteweg-de Vries-type equations, Differential Integral Equations 10 (1997), 777–796. Zbl0891.35135MR1741772
- W. Strauss, “Nonlinear wave equations,” CBMS Regional Conference Series in Mathematics, 73, American Math. Soc., Providence, RI, 1989. Zbl0714.35003
- M. Struwe, Globally regular solutions to the Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1988), 495–513. Zbl0728.35072MR1015805
- G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. Zbl0353.46018MR463908
- T. Tao, Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions, preprint, http://arxiv.org/abs/math.AP/0601164. MR2227039
- T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations 118 (2005), 28 pp. (electronic). Zbl1245.35122MR2174550
- M. Taylor, “Tools for PDE. Pseudodifferential operators, paradifferential operators and layer potentials,” Math. Surveys and Monographs 81, AMS, Providence RI 2000. Zbl0963.35211
- N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265–274. Zbl0159.23801MR240748
- T. Wolff, Recent work on sharp estimates in second-order elliptic unique continuation problems, J. Geom. Anal. 3 (1993), 621–650. Zbl0787.35017MR1248088
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.