Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible
Benjamin Texier[1]; Kevin Zumbrun[2]
- [1] Institut de Mathématiques de Jussieu, Université Paris Diderot (Paris 7) et UMR CNRS 7586
- [2] Indiana University, Bloomington, IN 47405
Séminaire Équations aux dérivées partielles (2006-2007)
- Volume: 302, Issue: 1, page 1-22
Access Full Article
topHow to cite
topTexier, Benjamin, and Zumbrun, Kevin. "Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible." Séminaire Équations aux dérivées partielles 302.1 (2006-2007): 1-22. <http://eudml.org/doc/11165>.
@article{Texier2006-2007,
affiliation = {Institut de Mathématiques de Jussieu, Université Paris Diderot (Paris 7) et UMR CNRS 7586; Indiana University, Bloomington, IN 47405},
author = {Texier, Benjamin, Zumbrun, Kevin},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {reactive compressible Navier-Stokes equations; denotation waves; instabilities; nonlinear stability; Hopf bifurcation},
language = {fre},
number = {1},
pages = {1-22},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible},
url = {http://eudml.org/doc/11165},
volume = {302},
year = {2006-2007},
}
TY - JOUR
AU - Texier, Benjamin
AU - Zumbrun, Kevin
TI - Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 302
IS - 1
SP - 1
EP - 22
LA - fre
KW - reactive compressible Navier-Stokes equations; denotation waves; instabilities; nonlinear stability; Hopf bifurcation
UR - http://eudml.org/doc/11165
ER -
References
top- A. Bourlioux, A. Majda, et V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51 (1991) 303–343. Zbl0731.76076MR1095022
- J. J. Erpenbeck, Nonlinear theory of unstable one–dimensional detonations, Phys. Fluids 10 (1967) No. 2, 274–289. Zbl0158.45305
- W. Fickett et W. Davis, Detonation : Theory and Experiment, Dover Press, Mineola, New York (2000).
- D. Gilbarg, The existence and limit behaviour of the one-dimensional shock layer, Amer. J. Math. 73 (1951), 256-274. Zbl0044.21504MR44315
- S. Kawashima et Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems for one-dimensional gas motion, Tohoku Math. J. 40 (1988), 449-464. Zbl0699.35171MR957056
- A.R. Kasimov et D.S. Stewart, Spinning instability of gaseous detonations. J. Fluid Mech. 466 (2002), 179–203. Zbl1013.76034MR1925152
- M. Kunze et G. Schneider, Exchange of stability and finite-dimensional dynamics in a bifurcation problem with marginally stable continuous spectrum, Z. Angew. Math. Phys. 55 (2004) 383-399. Zbl1063.35029MR2061251
- G. Lyng et K. Zumbrun, A stability index for detonation waves in Majda’s model for reacting flow. Phys. D 194 (2004), no. 1-2, 1–29. Zbl1061.35018
- G. Lyng et K. Zumbrun, One-dimensional stability of viscous strong detonation waves. Arch. Ration. Mech. Anal. 173 (2004), no. 2, 213–277. Zbl1067.76041MR2081031
- C. Mascia et K. Zumbrun, Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169 (2003), no. 3, 177–263. Zbl1035.35074MR2004135
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44, Springer-Verlag, New York-Berlin, (1983) viii+279 pp. ISBN : 0-387-90845-5. Zbl0516.47023MR710486
- B. Sandstede et A. Scheel, Hopf bifurcation from viscous shock waves, Preprint (2006). Zbl1195.35043
- B. Texier et K. Zumbrun, Relative Poincaré–Hopf bifurcation and galloping instability of traveling waves, Methods Anal. and Appl. 12 (2005), no. 4, 349–380. Zbl05137341MR2258314
- B. Texier et K. Zumbrun, Galloping instability of viscous shock waves, Preprint (2006), disponible à l’adresse http://www.math.jussieu.fr/~texier. Zbl1143.76439
- B. Texier et K. Zumbrun, Hopf bifurcation of viscous shock waves in compressible gas dynamics and MHD, à paraître dans Archive for Rational Mechanics and Analysis, disponible à l’adresse http://www.math.jussieu.fr/~texier. Zbl1155.76037
- K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity, in Hyperbolic Systems of Balance Laws, CIME School lectures notes, Lecture Notes in Mathematics 1911, Springer (2003). Zbl1138.35061MR2348937
- K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier–Stokes equations, Handbook of Mathematical Fluid Dynamics vol.3, Elsevier (2004). Zbl1222.35156MR2099037
- K. Zumbrun et P. Howard, Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47 (1998), 741–871 ; Errata, Indiana Univ. Math. J. 51 (2002), no. 4, 1017–1021. Zbl0928.35018MR1665788
- K. Zumbrun et D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999) 937–992. Zbl0944.76027MR1736972
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.