Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible

Benjamin Texier[1]; Kevin Zumbrun[2]

  • [1] Institut de Mathématiques de Jussieu, Université Paris Diderot (Paris 7) et UMR CNRS 7586
  • [2] Indiana University, Bloomington, IN 47405

Séminaire Équations aux dérivées partielles (2006-2007)

  • Volume: 302, Issue: 1, page 1-22

How to cite

top

Texier, Benjamin, and Zumbrun, Kevin. "Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible." Séminaire Équations aux dérivées partielles 302.1 (2006-2007): 1-22. <http://eudml.org/doc/11165>.

@article{Texier2006-2007,
affiliation = {Institut de Mathématiques de Jussieu, Université Paris Diderot (Paris 7) et UMR CNRS 7586; Indiana University, Bloomington, IN 47405},
author = {Texier, Benjamin, Zumbrun, Kevin},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {reactive compressible Navier-Stokes equations; denotation waves; instabilities; nonlinear stability; Hopf bifurcation},
language = {fre},
number = {1},
pages = {1-22},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible},
url = {http://eudml.org/doc/11165},
volume = {302},
year = {2006-2007},
}

TY - JOUR
AU - Texier, Benjamin
AU - Zumbrun, Kevin
TI - Bifurcation de Hopf d’ondes de choc pour les équations de Navier-Stokes compressible
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 302
IS - 1
SP - 1
EP - 22
LA - fre
KW - reactive compressible Navier-Stokes equations; denotation waves; instabilities; nonlinear stability; Hopf bifurcation
UR - http://eudml.org/doc/11165
ER -

References

top
  1. A. Bourlioux, A. Majda, et V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51 (1991) 303–343. Zbl0731.76076MR1095022
  2. J. J. Erpenbeck, Nonlinear theory of unstable one–dimensional detonations, Phys. Fluids 10 (1967) No. 2, 274–289. Zbl0158.45305
  3. W. Fickett et W. Davis, Detonation : Theory and Experiment, Dover Press, Mineola, New York (2000). 
  4. D. Gilbarg, The existence and limit behaviour of the one-dimensional shock layer, Amer. J. Math. 73 (1951), 256-274. Zbl0044.21504MR44315
  5. S. Kawashima et Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems for one-dimensional gas motion, Tohoku Math. J. 40 (1988), 449-464. Zbl0699.35171MR957056
  6. A.R. Kasimov et D.S. Stewart, Spinning instability of gaseous detonations. J. Fluid Mech. 466 (2002), 179–203. Zbl1013.76034MR1925152
  7. M. Kunze et G. Schneider, Exchange of stability and finite-dimensional dynamics in a bifurcation problem with marginally stable continuous spectrum, Z. Angew. Math. Phys. 55 (2004) 383-399. Zbl1063.35029MR2061251
  8. G. Lyng et K. Zumbrun, A stability index for detonation waves in Majda’s model for reacting flow. Phys. D 194 (2004), no. 1-2, 1–29. Zbl1061.35018
  9. G. Lyng et K. Zumbrun, One-dimensional stability of viscous strong detonation waves. Arch. Ration. Mech. Anal. 173 (2004), no. 2, 213–277. Zbl1067.76041MR2081031
  10. C. Mascia et K. Zumbrun, Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169 (2003), no. 3, 177–263. Zbl1035.35074MR2004135
  11. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44, Springer-Verlag, New York-Berlin, (1983) viii+279 pp. ISBN : 0-387-90845-5. Zbl0516.47023MR710486
  12. B. Sandstede et A. Scheel, Hopf bifurcation from viscous shock waves, Preprint (2006). Zbl1195.35043
  13. B. Texier et K. Zumbrun, Relative Poincaré–Hopf bifurcation and galloping instability of traveling waves, Methods Anal. and Appl. 12 (2005), no. 4, 349–380. Zbl05137341MR2258314
  14. B. Texier et K. Zumbrun, Galloping instability of viscous shock waves, Preprint (2006), disponible à l’adresse http://www.math.jussieu.fr/~texier. Zbl1143.76439
  15. B. Texier et K. Zumbrun, Hopf bifurcation of viscous shock waves in compressible gas dynamics and MHD, à paraître dans Archive for Rational Mechanics and Analysis, disponible à l’adresse http://www.math.jussieu.fr/~texier. Zbl1155.76037
  16. K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity, in Hyperbolic Systems of Balance Laws, CIME School lectures notes, Lecture Notes in Mathematics 1911, Springer (2003). Zbl1138.35061MR2348937
  17. K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier–Stokes equations, Handbook of Mathematical Fluid Dynamics vol.3, Elsevier (2004). Zbl1222.35156MR2099037
  18. K. Zumbrun et P. Howard, Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47 (1998), 741–871 ; Errata, Indiana Univ. Math. J. 51 (2002), no. 4, 1017–1021. Zbl0928.35018MR1665788
  19. K. Zumbrun et D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999) 937–992. Zbl0944.76027MR1736972

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.