On the collision of two solitons for the generalized KdV equation in the nonintegrable case
Yvan Martel[1]; Frank Merle[2]
- [1] Université de Versailles Saint-Quentin-en-Yvelines, Mathématiques, 45, av. des Etats-Unis, 78035 Versailles cedex, France
- [2] Université de Cergy-Pontoise, IHES and CNRS, Mathématiques, 2, av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-10
Access Full Article
topHow to cite
topMartel, Yvan, and Merle, Frank. "On the collision of two solitons for the generalized KdV equation in the nonintegrable case." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-10. <http://eudml.org/doc/11168>.
@article{Martel2007-2008,
affiliation = {Université de Versailles Saint-Quentin-en-Yvelines, Mathématiques, 45, av. des Etats-Unis, 78035 Versailles cedex, France; Université de Cergy-Pontoise, IHES and CNRS, Mathématiques, 2, av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France},
author = {Martel, Yvan, Merle, Frank},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Korteweg-de Vries equation; soliton; collision},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the collision of two solitons for the generalized KdV equation in the nonintegrable case},
url = {http://eudml.org/doc/11168},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Martel, Yvan
AU - Merle, Frank
TI - On the collision of two solitons for the generalized KdV equation in the nonintegrable case
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 10
LA - eng
KW - Korteweg-de Vries equation; soliton; collision
UR - http://eudml.org/doc/11168
ER -
References
top- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983) 313–345. Zbl0533.35029MR695535
- J.L. Bona, W.G. Pritchard and L.R. Scott, Solitary-wave interaction, Phys. Fluids 23, 438, (1980). Zbl0425.76019
- W. Craig, P. Guyenne, J. Hammack, D. Henderson and C. Sulem, Solitary water wave interactions. Phys. Fluids 18, (2006), 057106. Zbl1185.76463MR2259317
- J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave equation. II. Interaction of solitary waves, J. Computational Phys. 23 (1977), 63–73. Zbl0361.65100MR428922
- E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., American Mathematical Society, Providence, R. I., 1974, pp. 143–156. Zbl0353.70028MR336014
- R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. Zbl1168.35423
- H. Kalisch and J.L. Bona, Models for internal waves in deep water, Discrete and Continuous Dynamical Systems, 6 (2000), 1–20. Zbl1021.76006MR1739590
- P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. Zbl0162.41103MR235310
- Y. Martel, Asymptotic –soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Amer. J. Math. 127 (2005), 1103–1140. Zbl1090.35158MR2170139
- Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759–781. Zbl1126.35055MR2262941
- Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001) 219–254. Zbl0981.35073MR1826966
- Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55–80. Zbl1064.35171MR2109467
- Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity. To appear in Math. Annalen. arXiv:0706.1174v2 Zbl1153.35068MR2385662
- Y. Martel and F. Merle, Refined asymptotics around solitons for gKdV equations. To appear in Discrete and Continuous Dynamical Systems. Series A. arXiv:0706.1178v2 Zbl1137.35062MR2358258
- Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equations. arXiv:0709.2672v1 Zbl1300.37045MR1896235
- Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations. arXiv:0709.2677v1 Zbl1179.35291
- Y. Martel, F. Merle and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for the subcritical gKdV equations, Commun. Math. Phys. 231, (2002) 347–373. Zbl1017.35098MR1946336
- Y. Martel, F. Merle and T. Mizumachi, preprint. MR2109467
- R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. Zbl0333.35021MR404890
- L.Y. Shih, Soliton–like interaction governed by the generalized Korteweg-de Vries equation, Wave motion 2 (1980), 197–206. Zbl0443.76019MR589165
- T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623–651. Zbl1171.35107MR2286393
- T. Tao, Why solitons are stable ? arXiv:0802.2408v2
- M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39, (1986) 51–68. Zbl0594.35005MR820338
- N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. Zbl1201.35174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.