On the collision of two solitons for the generalized KdV equation in the nonintegrable case

Yvan Martel[1]; Frank Merle[2]

  • [1] Université de Versailles Saint-Quentin-en-Yvelines, Mathématiques, 45, av. des Etats-Unis, 78035 Versailles cedex, France
  • [2] Université de Cergy-Pontoise, IHES and CNRS, Mathématiques, 2, av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France

Séminaire Équations aux dérivées partielles (2007-2008)

  • Volume: 2007-2008, page 1-10

How to cite

top

Martel, Yvan, and Merle, Frank. "On the collision of two solitons for the generalized KdV equation in the nonintegrable case." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-10. <http://eudml.org/doc/11168>.

@article{Martel2007-2008,
affiliation = {Université de Versailles Saint-Quentin-en-Yvelines, Mathématiques, 45, av. des Etats-Unis, 78035 Versailles cedex, France; Université de Cergy-Pontoise, IHES and CNRS, Mathématiques, 2, av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France},
author = {Martel, Yvan, Merle, Frank},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Korteweg-de Vries equation; soliton; collision},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the collision of two solitons for the generalized KdV equation in the nonintegrable case},
url = {http://eudml.org/doc/11168},
volume = {2007-2008},
year = {2007-2008},
}

TY - JOUR
AU - Martel, Yvan
AU - Merle, Frank
TI - On the collision of two solitons for the generalized KdV equation in the nonintegrable case
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 10
LA - eng
KW - Korteweg-de Vries equation; soliton; collision
UR - http://eudml.org/doc/11168
ER -

References

top
  1. H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983) 313–345. Zbl0533.35029MR695535
  2. J.L. Bona, W.G. Pritchard and L.R. Scott, Solitary-wave interaction, Phys. Fluids 23, 438, (1980). Zbl0425.76019
  3. W. Craig, P. Guyenne, J. Hammack, D. Henderson and C. Sulem, Solitary water wave interactions. Phys. Fluids 18, (2006), 057106. Zbl1185.76463MR2259317
  4. J. C. Eilbeck and G. R.  McGuire, Numerical study of the regularized long-wave equation. II. Interaction of solitary waves, J. Computational Phys. 23 (1977), 63–73. Zbl0361.65100MR428922
  5. E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., American Mathematical Society, Providence, R. I., 1974, pp. 143–156. Zbl0353.70028MR336014
  6. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. Zbl1168.35423
  7. H. Kalisch and J.L. Bona, Models for internal waves in deep water, Discrete and Continuous Dynamical Systems, 6 (2000), 1–20. Zbl1021.76006MR1739590
  8. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. Zbl0162.41103MR235310
  9. Y. Martel, Asymptotic N –soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Amer. J. Math. 127 (2005), 1103–1140. Zbl1090.35158MR2170139
  10. Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759–781. Zbl1126.35055MR2262941
  11. Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001) 219–254. Zbl0981.35073MR1826966
  12. Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55–80. Zbl1064.35171MR2109467
  13. Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity. To appear in Math. Annalen. arXiv:0706.1174v2 Zbl1153.35068MR2385662
  14. Y. Martel and F. Merle, Refined asymptotics around solitons for gKdV equations. To appear in Discrete and Continuous Dynamical Systems. Series A. arXiv:0706.1178v2 Zbl1137.35062MR2358258
  15. Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equations. arXiv:0709.2672v1 Zbl1300.37045MR1896235
  16. Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations. arXiv:0709.2677v1 Zbl1179.35291
  17. Y. Martel, F. Merle and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for the subcritical gKdV equations, Commun. Math. Phys. 231, (2002) 347–373. Zbl1017.35098MR1946336
  18. Y. Martel, F. Merle and T. Mizumachi, preprint. MR2109467
  19. R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. Zbl0333.35021MR404890
  20. L.Y. Shih, Soliton–like interaction governed by the generalized Korteweg-de Vries equation, Wave motion 2 (1980), 197–206. Zbl0443.76019MR589165
  21. T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623–651. Zbl1171.35107MR2286393
  22. T. Tao, Why solitons are stable ? arXiv:0802.2408v2 
  23. M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39, (1986) 51–68. Zbl0594.35005MR820338
  24. N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. Zbl1201.35174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.