On the collision of two solitons for the generalized KdV equation in the nonintegrable case
Yvan Martel[1]; Frank Merle[2]
- [1] Université de Versailles Saint-Quentin-en-Yvelines, Mathématiques, 45, av. des Etats-Unis, 78035 Versailles cedex, France
- [2] Université de Cergy-Pontoise, IHES and CNRS, Mathématiques, 2, av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-10
Access Full Article
topHow to cite
topReferences
top- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983) 313–345. Zbl0533.35029MR695535
- J.L. Bona, W.G. Pritchard and L.R. Scott, Solitary-wave interaction, Phys. Fluids 23, 438, (1980). Zbl0425.76019
- W. Craig, P. Guyenne, J. Hammack, D. Henderson and C. Sulem, Solitary water wave interactions. Phys. Fluids 18, (2006), 057106. Zbl1185.76463MR2259317
- J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave equation. II. Interaction of solitary waves, J. Computational Phys. 23 (1977), 63–73. Zbl0361.65100MR428922
- E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., American Mathematical Society, Providence, R. I., 1974, pp. 143–156. Zbl0353.70028MR336014
- R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. Zbl1168.35423
- H. Kalisch and J.L. Bona, Models for internal waves in deep water, Discrete and Continuous Dynamical Systems, 6 (2000), 1–20. Zbl1021.76006MR1739590
- P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. Zbl0162.41103MR235310
- Y. Martel, Asymptotic –soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Amer. J. Math. 127 (2005), 1103–1140. Zbl1090.35158MR2170139
- Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759–781. Zbl1126.35055MR2262941
- Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001) 219–254. Zbl0981.35073MR1826966
- Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55–80. Zbl1064.35171MR2109467
- Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity. To appear in Math. Annalen. arXiv:0706.1174v2 Zbl1153.35068MR2385662
- Y. Martel and F. Merle, Refined asymptotics around solitons for gKdV equations. To appear in Discrete and Continuous Dynamical Systems. Series A. arXiv:0706.1178v2 Zbl1137.35062MR2358258
- Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equations. arXiv:0709.2672v1 Zbl1300.37045MR1896235
- Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations. arXiv:0709.2677v1 Zbl1179.35291
- Y. Martel, F. Merle and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for the subcritical gKdV equations, Commun. Math. Phys. 231, (2002) 347–373. Zbl1017.35098MR1946336
- Y. Martel, F. Merle and T. Mizumachi, preprint. MR2109467
- R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. Zbl0333.35021MR404890
- L.Y. Shih, Soliton–like interaction governed by the generalized Korteweg-de Vries equation, Wave motion 2 (1980), 197–206. Zbl0443.76019MR589165
- T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623–651. Zbl1171.35107MR2286393
- T. Tao, Why solitons are stable ? arXiv:0802.2408v2
- M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39, (1986) 51–68. Zbl0594.35005MR820338
- N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. Zbl1201.35174